跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/18 01:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡奇陵
研究生(外文):ChiLing Tsai
論文名稱:六自由度超精密奈米定位平台研製
論文名稱(外文):Design and Performance of a Six Degree-of-freedom Nanometer Resolution Micro-Positioning Stage
指導教授:張所鋐
指導教授(外文):ShuoHung Chang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
中文關鍵詞:精密定位平台六自由度奈米級解析度壓電致動器
外文關鍵詞:precision positioning stagesix degree-of-freedomnanometer resolutionpiezoelectric actuator
相關次數:
  • 被引用被引用:23
  • 點閱點閱:466
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在精密工程的發展上,微小化與精密化已經成為時勢所趨,在這發展方向的要求下,微米級甚至次微米級的定位系統的需求量與日遽增。而可發展方向有:更高精度、單層結構實現更多自由度等。本文針對前述發展方向進行研究,以多自由度且達到高精度為研究目標。
壓電材料由於具有體積小、反應快、機電轉換效率高與生熱少的優點,所以被大量應用在微定位系統的致動器上。現階段在壓電驅動的定位平台的研究上主要有三個方向,一是利用摩擦滯滑的現象,另一是尺蠖蟲形式的致動方式,最後一種則是採行材料變形的方式。前兩種方式的優點在於可以達到長行程的目的,第三種的方式則是有高定位精度的優點。
本文研製出一單層六自由度微動平台,此平台之最大行程為7 μm、解析度8 nm,旋轉量為180 μrad、旋轉解析度為0.7μrad,採用撓性鉸鍊、平板彈簧及彎曲彈簧等為機構設計主體,使用壓電致動器驅動。平台之設計亦經有限元素分析,並以模擬結果決定各細部設計參數,達到行程,旋轉量最大,各旋轉軸軸心重合,以及整體之體積最小,並同時考慮加工可行性等要求之最佳設計。
完成之平台以雷射干涉儀,及個人電腦加以整合,測試其性能,包括靜態與動態性能,運動精度及共振頻率等。
Precision positioning stages were widely used in many systems. This paper focuses on the development of precision positioning stages with high accuracy and achieving multiple degrees of freedom.
Piezoelectric actuators(PZT)are popularly implied in actuators in micro-positioning systems due to it’s advantages of infinitely small, high speed, high electrical mechanical coupling efficiency and little heat generation. In general, three methods are used in development of micro-positioning systems. One is to the use of the stick-slip phenomenon, another is the inchworm type, and the third is the application of material elastic deformation. The first two can achieve long travel range, and the third one can realize high precision.
A 6-dof micro-positioning stage were designed, fabricated, and tested. The stage has 7 μm travel and 8 nm resolution, and 180 mrad rotary range and 0.7mrad resolution. Using flexure hinges, leaf springs and bending springs to design the mechanism. Taking the PZT to drive the stage. Finite element analysis method was chosen to design the 6-dof micro-positioning stage. Taking the analysis results to design the dimensions of the flexibility structures and optimizing the characteristics.
Laser interferometer and PC were combined to measure the performance of the system including the static and dynamic characteristics, resonance frequency .
中文摘要 I
英文摘要 II
目錄 III
圖例目錄 V
表格目錄 Ⅹ
第一章 前言 1-1
第二章 研究目標 2-1
第三章 系統的設計與分析3-1
3.1 基本之機構形式 3-1
3.1.1 可用機構搜 3-1
3.1.2 機構設計 3-4
3.2 機構之微型化轉換3-10
3.3 有限元素分析 3-13
3.3.1 基本結構分析 3-13
3.3.2 內機構設計與分析3-46
3.3.3 中機構設計與分析3-54
3.3.4 外機構設計與分析3-63
3.3.5 機構組合與後續加工 3-72
第四章 實驗量測與數據分析4-1
4.1 實驗設計 4-1
4.2 實驗量測 4-2
4.2.1 感測器選用以及量測系統組裝4-2
4.2.2 實驗量測結果整理 4-4
4.2.3 內構實驗結果4-4
4.2.4 中機構實驗結果4-14
4.2.5 外機構實驗結果4-21
4.2.6 三機構性能整理 4-27
4.3 實驗數據討論 4-28
第五章 結論與未來展望5-1
文獻參考 R-1
[1] P. D. Atherton, Y. Xu., and M. McConnel, “New X-Y Stage for Positioning and Scanning,” Proceedings of SPIE’s Annual Meeting, Aug., 1996, Denver, USA.
[2] Y. Xu, P. D. Atherton, M. McConnel, and T. R. Hicks, “Design and Characteristics of Nanometer Precision Mechanisms,” Proceedings of American Society For Precision Engineering, Annual Meeting, 1996, USA.
[3] D. Heuderson, D. Jensen, and P. Piccirilli, “Recent Advancements in Piezoelectric Stepping Motors,” Proceedings of American Society for Precision Engineering, Annual Meeting, 1996, USA.
[4] H. Isobe, T. Moriguchi, and A. Kyusojin, “Development of Piezoelectric XYG Positioning Device Using Impulsive Force,” 日本精密工學會誌, vol. 62, no. 4, 1996.
[5] J. W. Ryu, and D. G. Gweon, “High Precision X-Y-q Micropositioning Stage Using Monolithic Flexure-Pivoted Linkages,” Proceedings of American Society for Precision Engineering, Annual Meeting, 1996, USA.
[6] S. D. Bittle, “Active Piezoelectric Probe for Precision Measurement on a CMM,” Mechatronics, vol. 7, no. 4, pp. 337-354, June, 1997.
[7] C. Chou, et. al, “CCD-based CMM Geometrical Error Measurement Using Fourier Phase Shift Algorithm,” International Journal of Machine Tools & Manufacture, vol. 37, no. 5, pp. 579-590, May, 1997.
[8] W. E. Singhose, “Improving Repeatability of Coordinate Measuring Machines with Shaped Command Signals,” Precision Engineering, vol. 18, no. 2-3, pp. 138-146, April-May, 1996.
[9] C. Che, et. al, “Modeling and Calibration of a Structured-light Optical CMM via Skewed Frame Representation,” Journal of Manufacturing Science and Engineering, Transactions of the ASME, vol. 118, no. 4, pp. 595-603, Nov., 1996.
[10] A. Balsamo, “Towards Instrument-oriented Calibration of CMMs,” CIRP Annals- Manufacturing Technology, vol. 45, no. 1, pp. 479-482, 1996.
[11] S. D. Jones, “Optimization Strategy for Maximizing Coordinate Measuring Machine Productivity, Part 1: Quantifying the Effects of Operating Speed on Measurement Quality,” Journal of Engineering for Industry, Transactions of the ASME, vol. 117, no. 4, pp. 601-609, Nov., 1995.
[12] S. D. Jones, “Optimization Strategy for Maximizing Coordinate Measuring Machine Productivity, Part 2: Problem Formulation, Solution, and Experimental Results,” Journal of Engineering for Industry, Transactions of the ASME, vol. 117, no. 4, pp. 610-618, Nov., 1995.
[13] D. W. Pohl, “Dynamic Piezoelectric Translation Devices,” Rev. Sci. Instrum., vol. 58, no. 1, Jan., 1987.
[14] P. Niedermann, R. Emch, and P. Descouts, “Simple Piezoelectric Translation Device,” Rev. Sci. Instrum, vol. 59, no. 2, Feb., 1988.
[15] Ch. Renner, Ph. Niedermann, A. D. Kent, and O. Fischer, “A Vertical Piezoelectric Inertial Slider,” Rev. Sci. Instrum., vol. 61, no. 3, March, 1990.
[16] A. R. Smith, S. Gwo, and C. K. Shih, “A New High-Resolution Two-Dimensional Micropositioning Device for Scanning Probe Microscopy Applications,” Rev. Sci. Instrum., vol. 65, no. 10, Oct., 1994.
[17] S. Ya. Tipissev, and A. O. Golubok, “Nanostep Movement and Measurement,” Tribology International, vol. 29, no. 5, 1996.
[18] A. Kanai, M. Miyashita, T. Hatai, and M. Yoshida, ”Friction Characteristics of Linear Plain Bearing Guideway and Motion Controllability of Numerically Controlled Slide,” American Society for Precision Engineering, vol. 1, 1996.
[19] H. J. Mamin, D. W. Abraham, E. Ganz, and J. Clarke, “Two-dimensional, Remote Micropositioner for a Scanning Tunneling Microscope,” Rev. Sci. Instrum., vol. 56 no. 11, Nov., 1985.
[20] V. G. Dudnikov, D. V. Kovalevsky, and A. L. Shabalin, “Simple, High Precision Linear-motor-driven XYq Positioner (Walker),” Rev. Sci. Instrum., vol. 62, no. 10, Oct., 1991.
[21] W. Wang, and I. Busch-Vishniac, “A High Precision Micropositioner Based on Magnetostriction Principle,” Rev. Sci. Instrum., vol. 63, no. 1, Jan., 1992.
[22] E. de Haas, W. Barsingerhorn, and J. F. van der Veen, “Piezoelectrically Driven Rotary Stage for Use in Ultrahigh Vacuum,” Rev. Sci. Instrum., vol. 67, no. 5, May, 1996.
[23] J. R. Matey, R. S. Crandall, and B. Brycki, “Bimorh-driven X-Y-Z Translation Stage for Scanned Image Microscopy,” Rev. Sci. Instrum., vol. 58, no. 4, April, 1987.
[24] J. Heil, A. Bohm, M. Primke, and P. Wyter, “Versatile Three-dimensional Cryogenic Micropositioning Device,” Rev. Sci. Instrum., vol. 67, no. 1, Jan., 1996.
[25] S. H. Chang, C. K. Tseng, and H. C. Chien, “A High Precision Piezodriven XYqZ Micropositioner,” Proceedings, 1998 International Conference of Mechtronics Technology, Hsin-Chu, Taiwan, Nov. 30- Dec. 3, 1998.
[26] 張所鋐, 簡宏彰, 曾俊凱, “三超精密三自由度微細定位機構,” 中華民國專利334888號.
[27] S. H. Chang, C. K. Tseng, and H. C. Chien, “An Ultra-precision XYθZ Piezo-micropositioner-Part I: Design and Analysis,” IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control., vol. 46, no. 4, pp. 897-905, Jul. 1999.
[28] S. H. Chang, C. K. Tseng, and H. C. Chien, “An Ultra-precision XYθZ Piezo-micropositioner-Part II: Experiment and Performance,” IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, vol. 46, no. 4, pp. 897-905, Jul. 1999.
[29] 張所鋐, 杜本權, “精密直線定位機構含位移放大/縮小裝置,” 中華民國專利335911號.
[30] S. H. Chang, and Y. C. Tung, “Electro-elastic Characteristics of A Symmetric Rectangular Piezoelectric Laminae, ” IEEE, Ultrasonics, Ferroelectrics, and Frequency Control, 46(4), pp. 950-960, July 1999.
[31] S. H. Chang, and B. C. Du, “A Piezodriven Precision Linear Mechanism with Large Travel range,” Proceedings, 1997 International Conference on Precision Engineering, Taipei, Taiwan, ROC, Nov. 18-21, 1997.
[32] 張所鋐, 李昇憲, “新式高精密長行程步進驅動器,” 中華民國專利328852號.
[33] S. H. Chang, and S. S. Li, “A High Resolution Long Travel Friction Drive Micropositioner with Programmable Step Size,” The Review of Scientific Instruments, vol. 70, no. 6, pp. 950-960, Jul. 1999.
[34] S. H. Chang, and S. S. Li, “A High Resolution Long Travel Friction Drive Micropositioner with Programmable Step Size,” Proceedings, 1998 International Conference of Mechtronics Technology, Hsin-Chu, Taiwan, Nov. 30- Dec. 3, 1998.
[35] S. H. Chang, and S. S. Li, “A Precision Friction Drive: Modeling and Experiment,” Proceedings, Symposium on Nano-metrology in Precision Engineering, Hong Kong, Nov. 24-25, 1998.
[39] S. H. Chang, and B. C. Du, "A Precision Piezodriven Micropositioner Mechanism with Large Travel Range," The Review of Scientific Instruments, 69(4), pp. 1785-1791, 1998.
[40] S. H. Chang, and B. C. Du, "Optimization of Electromechanical Coupling Efficiency of Piezoeelctric/elastic Disk," Proceedings, the 13th U.S. Congress of Applied Mechanics, in University of Florida, Gainesville, FL., USA, June 21-26, 1998.
[41] S. H. Chang, and S. S. Li, “A Friction Drive Micropositioning Mechanism with Nanometer Resolution,” Bulletin of the College of Engineering, National Taiwan University, no.76, pp. 51-65, June 1999.
[42] 張所鋐, 李昇憲, “晶片步進機,” 1999年10月已通過NSC review, 中華民國發明專利.
[43] S. H. Chang, Y. B. Chen, and H. C. Chen, 1999, “Design and Performance of a Precision Piezo-driven Rotary Micropositioner,“ Proceedings, International Conference on Advanced Manufacturing Technology, Xi’an, China, June 16-18,1999.
[44] 張所鋐, 陳玉彬, 李昇憲, “高精密度旋轉定位平台,” 1999年4月已申請中華民國新型專利.
[45] 張所鋐, 李振邦, 劉霆, 1999, “平面式三自由度微定位平台設計”, 中國機械工程學會第十六屆全國學術研討會論文集, 新竹市, Dec. 3-4, 1999.
[46] Ralph C Merkle, “A new family of six degrees of freedom positional devices,” Nanotechnology, vol. 8, pp. 47-52, 1997.
[47] Peng Gao, Hong Tan and Zhejun Yuan, “The design and characterization of a piezo-driven ultra-precision stepping positioner, “ Meas. Sci. Technol., vol. 11, no. 2, N15-N19, Feb., 2000.
[48] S. Gonda, T. Kurosawa and Y. Tanimura, “Mechanical performances of a symmetrical, monolithic three-dimensional fine-motion stage for nanometrology,“ Meas. Sci. Technol., vol. 10, pp. 986-993, 1999.
[49] Peng Gao and Shan-Min Swei, “A six-degree-of-freedom micro-manipulator based on piezoelectric translators,” Nanotechnology, vol. 10, pp. 447-452, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top