跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/03/04 17:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾俊耀
研究生(外文):Chunyao Tseng
論文名稱:壓電驅動精微定位機構設計
論文名稱(外文):Design of piezo-driven precision micro-positioner mechanism
指導教授:張所鋐
指導教授(外文):Shuohung Chang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:124
中文關鍵詞:三自由度奈米級微定位平台壓電驅動撓性結構
外文關鍵詞:three degree-of-freedomnanometer positioning systempiezoelectric actuatorflexure structures
相關次數:
  • 被引用被引用:18
  • 點閱點閱:473
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在精密工程的發展上,微小化與精密化已經成為時勢所趨,在這發展方向的要求下,微米級甚至次微米級的定位系統的需求量與日遽增。
壓電材料由於具有體積小、反應快、機電轉換效率高與生熱少的優點,所以被大量應用在微定位系統的致動器上。現階段在壓電驅動的定位平台的研究上主要有三個方向,一是利用摩擦滯滑的現象,另一是尺蠖蟲形式的致動方式,最後一種則是採行材料變形的方式。前兩種方式的優點在於可以達到長行程的目的,第三種的方式則是有高定位精度的優點。
本計畫的預期目標是完成XYZ三自由度壓電驅動之微定位平台的設計與製作,此平台的各軸最大行程為25 μm,解析度為10 nm。本實驗室已完成多項單自由度與多自由度微定位平台的設計與製作,為達到平台最佳的效能,將利用機構拓樸學,有限元素法及田口式方法來找尋最佳的機構安排方式。完成之設計將以線切割加工,並裝配積層式壓電致動器,以個人電腦進行系統整合,以測試其性能,包括靜態與動態性能、運動精度、共振頻率等。
The requirement of positioning systems with submicron accuracy increases with the development of precision engineering.
Piezoelectric actuators(PZT)are popularly implied in actuators in micro-positioning systems due to it’s advantages of infinite , high speed, high electrical mechanical transformation efficiency and little heat generation. Now in development of micro-positioning systems, there are three methods, that is, one is to take use of the stick-slip phenomenon, another is the inchworm type, and the other is the application of material deformation. The first two ones can achieve the goals of long travel range, and the last one can realize the good of high precision.
The purpose of the project is to design and manufacture of a PZT driven XYZ micro-positioning system with largest travel range of 25 μm and resolution of 10 nm at least. In order to achieve the goal with simplest mechanism, topology will play leading role in the design of the micro-positioning system. FEM is also used to simulate the performance of the system. After manufacture, capacitive sensor and PZT actuator will be assembled into the structure of the plate, which is then experimented with to measure the performance of the system including the static and dynamic characteristics and resonance frequency.
誌謝
中文摘要I
英文摘要II
目錄III
圖例目錄V
表格目錄IX
第一章 緒論1-1
1.1 研究背景1-1
1.2 文獻回顧1-5
第二章 研究目的2-1
第三章 系統的設計與分析3-1
3.1 基本機構形式3-1
3.2 機構之微型化轉換3-7
3.3 微定位平台之設計與分析3-11
3.3.1 X-Y 二自由度微定位平台之設計3-11
3.3.2 Z軸單自由度微定位平台之設計3-13
3.3.3 有限元素分析3-14
3.4 平台之尺寸最佳化設計3-17
3.5 平台之尺寸最佳化設計3-28
3.5.1 有限元素模型建立3-28
3.5.2 實例分析3-30
3.6 誤差預算分析3-41
3.7 系統的組裝3-43
第四章 實驗量測4-1
4.1 感測器之選用與系統組裝4-1
4.1.1 位移感測器之選用4-1
4.1.2 系統組裝與精度控制4-3
4.2 實驗項目與方法4-5
4.2.1 實驗儀器4-5
4.2.2 壓電驅動精微定位機構4-6
4.2.3 實驗項目4-6
4.3 實驗結果整理4-9
4.3.1 XY平台之實驗結果整理4-9
4.3.2 Z平台實驗結果整理4-19
4.3.3 精微定位機構實驗結果整理4-22
4.3.4 系統整合4-28
第五章 結論與未來展望5-1
參考文獻R-1
附錄A 積層式壓電材料A-1
A.1 壓電材料基本性質A-1
A.2 壓電材料組成律A-4
A.3 機電轉換係數A-6
A.4 積層式壓電致動器A-9
附錄B 實體圖B-1
作者簡歷
參考文獻
[1] 井澤實著,杜光宗編譯,“精密定位技術及其設計技術”,建宏出版社。
[2] Norio Uchida, Osamu Kuwabara, Toru Tojyo, ”An Excimer Laser Stepper with Through-the-Lens Aligment,” Int. J. Japan Soc. Prec. Eng., V28, No.2, June 1994, pp. 150-155.
[3] 江田弘著, 杜光宗編譯, “超精密工作機械的製作,” 建宏出版社, 1995.
[4] 井澤實著, 杜光宗編譯, “精密定位技術及其設計技術,” 建宏出版社, 1992.
[5] Takaaki Oiwa and Toshihiko Sugimoto, “Shape Optimization for Flexure Hinges,” 精密工學會誌, Vol. 63, No. 10, pp. 1454-1458, 1997.
[6] D. W. Pohl, “Dynamic piezoelectric translation devices,” Rev. Sci. Instrum., Vol. 58, No. 1, pp. 54-62, 1987.
[7] P. Niedermann, R. Emch, and P. Descouts, “Simple Piezoelectric Translation Device,” Rev. Sci. Instrum, vol. 59, no. 2, Feb., 1988.
[8] Ch. Renner, Ph. Niedermann, A. D. Kent, and O. Fischer, “A Vertical Piezoelectric Inertial Slider,” Rec. Sci. Instrum., Vol. 61, No. 3, pp. 965-972, 1990.
[9] Robert Curtis, Chris Pearson, Peter Gaard, and Eric Ganz, “A Compact Micropositioner for Use in Ultrahigh Vacuum,” Rev. Sci. Instrum., Vol. 64, No. 9, pp. 2687-2690, 1993.
[10] A. R. Smith, S. Gwo, and C. K. Shih, “A New High-resolution Two-dimensional Micropositioning Device for Scanning Probe Microscopy Applications,” Rev. Sci. Instrum., Vol. 65, No. 10, pp. 3216-3221, 1994.
[11] Mathias Goken, “Scanning Tunneling Microscopy in HUV with an X, Y, Z micropositioner,” Rev. Sci. Instrum. Vol. 65, No. 7, pp. 2252-2254, 1994.
[12] R. Erlandsson and L. Olsson, “A Three-axis Micropositioner for Ultrahigh Vacuum Use Based on the Inertial Slider Principle,” Rev. Sci. Instrum., Vol. 67, No. 4, pp. 1472-1474, 1996.
[13] V. N. Yakimov, “Vertical Ramp-actuated Inertial Micropositioner with a Rolling-balls Guide,” Rev. Sci. Instrum., Vol. 68, No. 1, pp. 136-139, 1997.
[14] B. L. Blackford, “A Simple Self-propelled Two-dimensional Micropositioner,” Rev. Sci. Instrum., Vol. 64, No. 5, pp. 1360-1361, 1993.
[15] S. Ya. Tipissev, and A. O. Golubok, “Nanostep Movement and Measurement,” Tribology International, Vol. 29, no. 5, 1996.
[16] A. Kanai, M. Miyashita, T. Hatai, and M. Yoshida, ”Friction Characteristics of Linear Plain Bearing Guideway and Motion Controllability of Numerically Controlled Slide,” American Society for Precision Engineering, vol. 1, 1996.
[17] J. -M. Breguet, R. Pe’rez, A. Bergander, C. Schmitt, R. Clavel, and H. Bleuler, “Piezoactuaors for motion control from centimeter to nanometer,” Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, Volume 1, Vol.1, pp. 492 —497, 2000
[18] J. -M. Breguet, R. Clavel, “New Designs For Long Range, High Resolution, Multi-Degrees-of-Freedom Piezoelectric Actuators,” 6th International Conference on New Actuators with Accompanying Exhibition, pp. 28-31, Bremen, Germany, 1998.
[19] H. Jonathon Mamin, David W. Abraham, Eric Ganz, and John Clarke, “Two-Dimensional, Remote Micropositioner for a Scanning Tunneling Microscope,” Rev. Sci. Instrum., Vol. 56, No. 11, pp. 2168-2173, 1985.
[20] V. G. Dudnikov, D. V. Kovalevsky, and A. L. Shabalin, “Simple, High Precision Linear-motor-driven Positioner (Walker),” Rev. Sci. Instrum., Vol. 62, No. 10, pp. 2492-2498, 1991.
[21] E. de Haas, W. Barsingerhorn, and J. F. van der Veen, “Piezoelectrically Driven Rotary Stage for Use in Ultrahigh Vacuum,” Rev. Sci. Instrum., Vol. 67, No. 5, pp. 1930-1934, 1996.
[22] Guangyi Shang, Xiaohui Qui, Chen Wang, and Chunli Bai, “Piezoelectric Push-Pull Micropositioner for Ballistic Electron Emission Microscope,” Rev. Sci. Instrum., Vol. 68, No. 10, pp. 3803-3805, 1997.
[23] K. Pond, B. Z. Nosho, H. R. Stuber, A. C. Gossard, and W. H. Weinberg, “A Two-Dimensional Ultrahigh Vacuum Positioner for Scanning Tunneling Microscopy,” Rev. Sci. Instrum., Vol. 69, No. 3, pp. 1403-1405, 1998.
[24] Peng Gao, Hong Tan, and Zhejun Yuan, ” The design and characterization of a piezo-driven ultra-precision steeping positioner,” Meas. Sci. Technol. 11 (2000) pp. 15-19, 1999.
[25] Pierre Cusin, Takuhiko Sawai, and Satoshi Konishi, “Compact and precise positioner based on the Inchworm principle,” J. Micromech. Microeng. 10 (2000) pp.516-521, 2000
[26] Fredric E. Scire and E. Clayton Teague, “Piezodriven 50-μm Range Stage with Subnanometer Resolution,” Rev. Sci. Instrum., Vol. 42, No. 12, pp. 1735-1740, 1978.
[27] Eiichi Furukawa, Makoto Mizuno, and Kenji Terada, “A Magnifying Mechanism for Use on Piezo-driven Mechanisms,” Int. J. Japan Soc. Prec. Eng., Vol. 25, No. 4, pp. 315-320, 1991.
[28] Eiichi Furukawa and Makoto Mizuno, “Piezo-driven Translation Mechanisms Utilizing Linkages,” Int. J. Japan Soc. Prec. Eng., Vol. 26, No. 1, pp. 54-59, 1992.
[29] Eiichi Furukawa, Makoto Mizuno and Taro Hojo, “A Twin-Type Piezo-driven Translation Mechanisms,” Int. J. Japan Soc. Prec. Eng., Vol. 28, No. 1, pp. 70-75, 1994.
[30] Eiichi Furukawa, Makoto Mizuno and Toshio Doi, “Development of A Flexure-Hinged Translation Mechanism Driven by Two Piezoelectric Stacks,” JSME International Journal, Series C, Vol. 38, No. 4, pp. 743-748, 1995.
[31] J. Heil, A. Bohm, M. Primke, and P. Wyter, “Versatile Three-dimensional Cryogenic Micropositioning Device,” Rev. Sci. Instrum., vol. 67, no. 1, Jan., 1996.
[32] S. H. Chang and B. C. Du, “A Precision Piezodriven Micropositioner Mechanism with Large Travel Range,” Rev. Sci. Instrum., Vol. 69, No. 4, pp. 1785-1791, 1998.
[33] F. Meli and R. Thalmann, “Long range AFM profiler used for accurate pitch measurements,” Meas. Sci. Technol. 9 (1998) pp.1087-1092, 1998.
[34] E. Glumac and William P. Robins, “A planar Unimorph-based actuator with large vertical displacement capability PartⅠ:Experiment,” IEEE Transactions on ultrasonics, ferroelectrics, and frequency control, Vol. 45, NO. 5, SEP 1998.
[35] Peng Gao and Shan-Min Swei, “A six-degree-of-freedom micro-manipulator based on piezoelectric translators,” Nanotechnology 10 (1999) pp.447-452, June 1999.
[36] Peng Gao, Swan-Min Swei and Zhejun Yuan, “A new piezo-driven precision micro-positioning stage utilizing flexure hinges,” Nanotechnology 10 (1999) pp.447-452, March 1999.
[37] Sang-Soon Ku, Unnat Pinsopon, Sabri Cetinkunt, and Shin-ichi Nakajima, “Design, fabrication, and real-time neural network control of a three degree-of-freedomf. Nanopositioner,” IEEE/AMSE transaction on mechatronics, Vol. 5, No. 3, SEP 2000.
[38] J. R. Matey, R. S. Crandall, and B. Brycki, “Bimorph-Driven X-Y-Z Translation Stage for Scanned Image Microscopy,” Rev. Sci. Instrum., Vol. 58, No. 4, pp. 567-570, 1987.
[39] 簡宏彰, “三自由度超精密微定位平台之研究,” 國立台灣大學機械工程學研究所碩士論文, 1996.
[40] 曾俊凱, “三自由度微定位平台之動態分析,” 國立台灣大學機械工程學研究所碩士論文, 1997.
[41] Minoru Kuribayashi Kurosawa, Osamu Kodaira, Yuki Tsuchitoi, Toshiro Higuchi, “Transducer for High Speed and Large Thrust Ultrasonic Linear Motor Using Two Sandwich-Type Vibrators,” IEEE Transaction on Ultrasonic, Ferroelectrics, and Frequency Control, Vol. 45, N0. 5, pp. 1188-1195, 1998.
[42] S. H. Chang, C. K. Tseng, and H. C. Chien, “A High Precision Piezodriven XYZ Micropositioner,” Proceedings, 1998 International Conference of Mechtronics Technology, Hsin-Chu, Taiwan, Nov. 30- Dec. 3, 1998.
[43] 張所鋐, 簡宏彰, 曾俊凱, “三超精密三自由度微細定位機構,” 中華民國專利334888號.
[44] S. H. Chang, C. K. Tseng, and H. C. Chien, “An Ultra-precision XYZ Piezo-micropositioner-Part I: Design and Analysis,” IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control., vol. 46, no. 4, pp. 897-905, Jul. 1999.
[45] S. H. Chang, C. K. Tseng, and H. C. Chien, “An Ultra-precision XYZ Piezo-micropositioner-Part II: Experiment and Performance,” IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, vol. 46, no. 4, pp. 897-905, Jul. 1999.
[46] 張所鋐, 李振邦, 劉霆, 1999, “平面式三自由度微定位平台設計”, 中國機械工程學會第十六屆全國學術研討會論文集, 新竹市, Dec. 3-4, 1999.
[47] S. Gonda, T. Kurosawa and Y. Tanimura, “Mechanical performances of a symmetrical, monolithic three-dimensional fine-motion stage for nanometrology,“ Meas. Sci. Technol., vol. 10, pp. 986-993, 1999.
[48] Tokin Company, “Multilayer Piezoelectric Actuators No. 1 & User''''''''s Manual,” 1995.
[49] Vladimir Sedlacek, “Non-Ferrous Metals and Alloys,” Amsterdam-Oxford-New York-Tokyo, 1986
[50] Tapan P. Bagchi, “Taguchi Methods Explained — Practical Steps to Robust Design” , Prentice-Hall of India, 1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top