跳到主要內容

臺灣博碩士論文加值系統

(100.26.196.222) 您好!臺灣時間:2024/03/01 05:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉永慧
研究生(外文):Yung-Hui Liu
論文名稱:雷射超音波在層狀結構非破壞評估之應用:理論、實驗與反算
指導教授:吳政忠李世光李世光引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:177
中文關鍵詞:雷射超音波非破壞檢測層狀介質波傳行為表面波頻散反算雷射光柵
相關次數:
  • 被引用被引用:1
  • 點閱點閱:405
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本文探討雷射超音波在層狀介質非破壞評估之應用,文中結合理論數值計算與雷射超音波實驗量測及訊號分析,配合反算方法進行層狀材料特性之定量評估,發展成一系列完整應用於層狀介質之非破壞檢測技術。
在異向性層狀介質之彈性波傳頻散理論計算方面,本文引用六階矩陣理論計算層狀介質之頻算關係,做為反算之理論依據。在實驗量測方面,文中採用雷射脈衝激發點波源及雷射光柵兩種波源激發彈性波。雷射脈衝激發點波源產生能量密度高且高頻寬之波源,因此於層狀介質頻散關係測定中,能一次獲得寬頻之頻散結果,同時卻可能因試體表面局部高溫使表面融蝕破壞。為配合檢測技術的提升及待測試物之縮小,雷射光柵之應用形成高頻率且窄頻之表面波波源,並有效增加波傳方向彈性波位移量。雷射光柵因光作用面積增加,可大幅降低脈衝雷射能量密度以防止試件表面傷害。
有關雷射光柵之光學架構,文中以修正之光路設計取代傳統實驗架設,因此簡化光學元件的使用並縮小光學元件架設範圍。相較於雷射激發點波源,修正之雷射光柵波源可將激發之表面波頻率提高至10MHz範圍,以符合毫微米級層狀介質量測需求。雷射超音波之接收為使用接觸式壓電探頭及非接觸式雷射振動干涉儀量測位移訊號。
於層狀半無限域頻散實驗中,本文以雷射超音波點波源/點接收技術完成表面波頻散實驗。經由相位頻譜分析表面波相位速度並比對數值模擬結果後,對於具黏著層之層狀半無限域試體,進行一系列黏著層定量及定性分析。當黏著層厚度極薄時,微小之厚度變化影響頻散關係極大,因此利用此頻散特性為依據並加以反算評估,同時獲得微米級黏著層厚度結果及多未知數之黏著層材料常數。此外,對於具缺陷之黏著層,同樣可由實驗之頻散關係中觀察並獲得脫層缺陷情形。
在複材層版非破壞評估方面,本文以雷射超音波配合徹體波量測,測定異向性單方向纖維複材薄板材料常數。首先以傳統超音波法量測出薄板部份材料常數;其次配合異向層板之波傳頻散理論,以雷射超音波實驗獲得不同方向藍姆波反對稱基本模態的頻散現象,再配合反算求出其全部材料常數。本方法適用以非破壞檢測方法於異向性疊層複材薄板材料常數之測定。
在表面鍍層非破壞評估方面,本文利用雷射引致光柵波源配合雷射干涉儀位移量測系統,測定表面鍍層試體表面波頻散現象,進而了解鍍層試件中表層與基底接合狀況及鍍層厚度。文中進一步將雷射高頻波源應用於半無限域與薄層層狀半無限域之表面波實驗中,獲得高頻表面波波速及薄層狀介質之頻散關係。
綜言之,本文結合雷射超音波實驗、頻散數值運算及反算方法,建立一系列層狀異向性材料之非破壞檢測模式。研究成果顯示此流程可成功應用於表面鍍層材質檢測、層狀介質內部黏著層厚度及異向性材料材料常數測定。
第一章緒論……………………………………………………1
1-1研究動機………………………………………………1
1-2文獻回顧………………………………………………3
1-3本文內容………………………………………………5
第二章異向性層狀介質頻散理論……………………………7
2-1座標轉換………………………………………………7
2-2異向性材料之六階矩陣波傳理論……………………8
2-3均質介質平面諧調波之波傳推導……………………11
2-4波動阻抗與反射係數…………………………………14
2-5頻散方程式……………………………………………17
2-6異向層狀介質之表面波頻散…………………………21
第三章雷射超音波之波源與接收……………………………38
3-1雷射波源生成之機制與理論…………………………38
3-2雷射點波源之激發……………………………………40
3-3雷射光柵波源…………………………………………42
3-4雷射都譜勒干涉儀……………………………………46
3-5以雷射干涉儀量測超音波探頭振幅位移……………49
3-6錐形感測器與雷射干涉儀位移量測之比對…………54
第四章層狀介質表面波頻散之實驗探討……………………68
4-1相位頻譜分析法………………………………………68
4-2雷射超音波實驗………………………………………70
4-3層狀介質之表面波頻散實驗結果……………………73
4-4黏著層厚度與黏結性質對頻散關係之影響…………75
4-5以雷射超音波實驗偵測黏結缺陷……………………83
第五章雷射超音波在複材層板材料常數量測之應用………112
5-1碳纖維單方向複材層板材料常數……………………112
5-2傳統超音波量測材料常數……………………………115
5-3不同方向雷射超音波頻散實驗………………………118
5-4反算未知材料常數……………………………………120
第六章雷射光柵實驗法在鍍層性質量測之應用……………132
6-1雷射光柵波源與雷射干涉儀接收……………………132
6-2以半無限域測試雷射光柵波源………………………135
6-3以雷射光柵實驗測定層狀半無限域黏結層…………137
6-4表面鍍層試體之量測…………………………………140
第七章結論與展望……………………………………………155
參考文獻……………………………………………………………159
Achenbach, J. D., (1973) Wave Propagation in Elastic Solids, North-Holland, Amsterdam, Holland.
Auld, B.A., (1973) Acoustic Fields and Waves in Solids, vol. 1, Wiley Interscience, New York, New York.
Barnett, D.M., and Lothe, J., (1973) “Consideration of the Existence of Surface Wave (Rayleigh Wave) Solutions in Anisotropic Elastic Crystals, ” J.Phys. F:Metal Phys., 4, 671-686.
Benitez, F. G., and Rosakis, A., (1987) “Three-Dimensional Elastostatics of a Layered Medium,” J. Elasticity, 18, 3-50.
Benson, R.W., and Raelson, J., (1959) “Acoustoelasticity,” Product Engineering, 30(29), 56-59.
Bobbin, S.E., Wagner, J.W., and Cammarata, R.C. (1992), “Interpretation of laser generated low-order Lamb waves for elastic modulus measurements in thin films,” Ultrasonics, 30 (2), 87-90.
Braga, M. B., (1990) “Wave propagation in anisotropic layered composites,” Ph. D. dissertation, Stanford University, Stanford, California, USA.
Brucki, J. S., (1982) “Liquid Penetrate Test Equipment,” in R.C. McMaster (ed.), Nondestructive Testing Handbook, vol. 2, Liquid Penetrate Tests, 2nd ed., American Society for Metals, Metals Park, OH, 5, 153-220.
Bufler, H., (1971) “Theory of Elasticity of a Multilayered Medium,” J. Elasticity, 1, 125-143.
Cachier, G., (1970) “Optical Excitation of High-Amplitude Surface Waves,” Appl. Phys. Lett., 17(10), 419-420.
Castagnede, K., Kim, K.Y., Sachse, W., and Thompson, M.O., (1991) “Determination of the Elastic Constants of Anisotropic Materials Using Laser-generated Ultrasonic Signals,” J. Appl. Phys., 70(1), 150-157.
Chadwick, P., and Smith, G.D., (1977) “Foundations of The Theory of Surface Waves in Anisotropic Elastic Materials,” Adv. Appl. Mech., 17, 303-376.
Chai, J.-F., and Wu, T.-T., (1994) “Determinations of Anisotropic Elastic Constants Using Laser Generated Surface Waves,” J. Acoust. Soc. Am., 95(6), 3232-3241.
Chen, Y.-C., (1994) “Dispersion of surface waves in an anisotropic layered medium,” M.S. Thesis, National Taiwan University, Taiwan.
Claerbout, J. F., (1985) “Imaging the Earth’s Interior,” Blackwell Scientific Publications.
Datta, S. K., Shah, A. H., Bratton, R. L., and Chakraborty, T., (1988) “Wave Propagation in Laminated Composite Plates,” J. Acoust. Soc. Am., 83(6), 2020-2026.
Dayal, V., and Kinra, V.K., (1989) “Leaky Lamb Waves in an Anisotropic Plate. I: An Exact Solution and Experiments,” J. Acoust. Soc. Am., 85(6), 2268-2276.
Dewhurst, R. J., Edwards, C., Mckie, A. D. W., and Palmer, S. B. (1987) “Estimation of the Thickness of Thin Metal Sheet Using Laser Generated Ultrasound,” Appl. Phys. Lett., 51(14), 1066-1068.
Djelouah, H., and Baboux, J. C., (1989) “Pulsed Calibration Technique of Miniature Ultrasonic Receivers Using a Wideband Laser Interferometer, ” Ultrasonics, 27(2), 80-85.
Don, E. B., and Roderic, K. S., “Nondestructive Evaluation,” McGraw-Hill Book Co.
Doyle, P. A., and Scala, C. M., (1991) “Ultrasonic measurement of elastic constants for composite overlays,” Rev. Prog. in QNDE, 10B, 1453-1459.
Drain, L. E., (1980) “The Laser Doppler Technique,” Wiley, New York, 42, New York, USA.
Durst, F., Melling, A., and Whitelaw, J. H., (1981) “Principles and Practice of Laser-Doppler Anemometry,” 2nd Edition, Academic Press, London, New York, USA.
Ewing, W. M., Jardetzky, W. S., and Press, F., (1957) “ Elastic Waves in Layered Media, ” McGraw-Hill, New York, USA.
Farnell, G. W., and Adler, E. L., (1972) “Elastic Wave Propaga-tion in Thin Layers,” Physical Acoustics, Academic Press, New York, 9, 35-127.
Fisher, W. R., Crostack, H. A., and Steffens, H. D., (1979) “Automatic Analysis of Holographical Interferograms for Non-destructive Testing,” Laser-Opto-Electronic Conference, Munich.
Frank, L., and Leno, S., (1993) “Introduction to Optics,” Prentice Hall, Upper Saddle River, New Jersey, 2nd Edition, New Jersey, USA.
Graff, K. F., (1991) “Wave Motion in Elastic Solids,” Dover Publications.
Harata, A., Nishimura, H., and Sawada T., (1990) “Laser-Induced surface Acoustic Waves and Photothermal Surface Gratings Generated by Crossing Two Pulsed Laser Beams,” Appl. Phys. Lett., 57(2), 132-134.
Hirao, M., Sotani, Y., Takami, K., and Fukuoka, H., (1981) “Rayleigh Wave Propagation in a Solid with a Cold-Worked Surface Layer,” J. of Nondestructive Evaluation, 2, 43-49.
Hutchins, D. A., Lundgren, K., and Palmer, S. B., (1989) “A Laser Study of the Transient Lamb Waves in Thin Materials,” J. Acoust. Soc. Am., 85 (4), 1441-1448.
Jarosz, B. J., (1991) “Ultrasonic Surface Modes Generated by Laser Pulses on Duraluminium,” Ultrasonics, 29, 53-57.
Johnson, M. A., Berthelot, Y. H., Brodeur, P. H., and Jacobs, L. A. (1996), “Investigation of Laser Generation of Lamb Waves in Copy Paper,” Ultrasonics, 34, 703-710.
Jones, R. M., (1975) “Mechanics of Composite Materials, ” Script book company.
Kazushi, Y., and et. (1993) “Analysis of Excitation and Coherent Amplitude Enhancement of Surface Acoustic Waves by the Phase Velocity Scanning Method,” J. Appl. Phys., 74(11), 6511.
Kim, J. O., and Achenbach, J. D., (1992) “Elastic Constants of Single-crystal Transition-metal Nitride Films Measured by Line-focus Acoustic Microscopy,” J. Appl. Phys., 72(5), 1805-1811.
Kino, G. S., (1987) “Devices Imaging and Analog Signal Processing,” Acoustic waves, Prentice-Hall, Inc., New Jersey, USA.
Ledbetter, H. M., and Moulder, J. C., (1979) “Laser-Induced Rayleigh Waves in Aluminum,” J. Acoust. Soc. Am., 65, 840-842.
Lee, C. K., and Wu, T. W., (1995) “Differential Laser Interferometer for Nanometer Displacement Measurements,” J. AIAA, 33(9), 1675-1680.
Lee, C. K., Wu, G. Y., Teng, C. T., Wu, W. J., Lin, C. T., etc., (1999) “A high Performance Doppler Interferometer for Advanced Optical Storage Systems,” J. Japanese Appl. Phys., 38(1), 3B.
Liu, Y. H., Wu, T. T., and Lee, C. K., (1999) “On the Calibration of Piezoelectric Transducers Using Laser Interferometer,” Far East Conference on NDT.
Lowe, M. J. S., and Cawley, P. (1994), “The Applicability of Plate Wave Technique for the Inspection of Adhesive and Diffusion Bonded Joint,” Journal of Nondestructive Evaluation, 13(4), 185-200.
Mal, A. K., (1988) “Wave Propagation in Layered Composite Laminates Under Periodic Surface Loads,” Wave motion, Vol. 10, 257-266.
Mal, A. K., and Ting, T. C., (1988) “Wave Propagation in Structural Composites,” ASME-AMD, Vol. 90, 1-16.
Marun, A., (1990) “Application of the Stroh Formalism to Selected Static and Dynamic Problems in Two-Dimensional Anisotropic Elasticity,” Ph. D. Thesis, Stanford University, Stanford, California, USA.
Mase, G. T., and Johnson, G. C., (1987) “An Acoustoelastic Theory for Surface Waves in Anisotropic Media,” J. Appl. Mech., 54, 127-135.
Nakano, H., and Nagai, S., (1991) “Laser Generation of Anti-symmetric Lamb Waves in Thin Plates,'' Ultrasonics, 29, 230-234.
Nayfeh, A. H., and Chimenti, D. E., (1989) “Free Wave Propagation in Plates of Anisotropic Media,” J. Appl. Mech., 56, 881-886.
Nazarian, S., and M., Desai, R. (1992), “Automated Surface Wave Method: Field Testing,” Journal of Geotechnical Engineering, 119(7), 1094-1111.
Nelder, J. A., and Mead, R., (1965) “A Simplex Method for Function Minimization,” Computer Journal, 7, 308-313.
Nishino, H., Tsukahara, Y., Nagata, Y., Koda, T., and Yamanaka, K., (1993) “Excitation of Frequency Surface Acoustic Waves by Phase Velocity Scanning of a Laser Interference Fringe,” Appl. Phys. Lett., 62(17), 2036-2038.
Olivier, R., and Martin, V., (1991) “Wavelet and Signal Processing,” IEEE. SP. MAGAZINE, 14-38.
Pialucha, T., Guyott, C. C. H., and Cawley, P. (1989), “Amplitude Spectrum Method for the Measurement of Phase Velocity, ” Ultrasonics 27, 270-279.
Proctor, Jr., T. M. (1986) “More Recent Improvement in the NBS Conical Transducer,” Journal of Acoustic Emission, 5(4), 134-142.
Proctor, Jr., T. M., and Breckenrige, F. R., (1991) “Source Force Waveforms: The Use of a Calibrated Transducer in Obtaining an Accurate Waveform of a Source,” Journal of Acoustic Emission, 10(3), 43-48.
Proctor, Jr., T. M., (1982) “An Improved Piezoelastic Acoustic Emission Transducer,” J. Acoust. Soc. Am., 71(5), 1163-1168.
Proctor, Jr., T. M., (1982) “Some Details on the NBS Conical Transducer,” Journal of Acoustic Emission, 1(3), 173-178.
Rayleigh, L., (1885) “On Waves Propagating Along the Plane Surfaces of an Elastic Solid,” Proc. Lond. Math. Soc., 17, 4-11.
Rose, W. R., Rokhlin, S. I., and Adler, L., (1986) “Evaluation of Anisotropic Properties of Graphite Composites Using Lamb Waves,” in Review of Progress in Quantitative Nondestructive Evaluation (D.O. Thompson and D.E. Chimenti, eds.), 6B, 1111, Plenum, New York.
Sachse, W., and Kim, K. Y., (1987) “Quantitative Acoustic Emission and Failure Mechanics of Composite Materials,” Ultrasonics, 25, 195-203.
Scruby, C. B., (1989) “Some Application of Laser Ultrasound,” Ultrasonics, 27, 195-209.
Scruby, C. B., and Drain, L. E., (1990) “Laser Ultrasonics: Techniques and Applications,” IOP Publishing Ltd, Bristol, England.
Scudder, L. P., Hutchin, D. A., and Guo, N. (1996) “Laser-Generated Ultrasonic Guided Waves in Fiber-Reinforced Plates — Theory and Experiment,” IEEE Trans. Ultra., Ferro. And Freq. Control, 43(5), 870-880.
Sezawa, K., (1927) “Dispersion of Elastic Waves Propagated on the Surface of Stratified Bodies and on Curved Surfaces,” Bull. Earthquake Res. Inst. (Tokyo), 2, 1-27.
Siegman, A. E., (1986) “Lasers,” Oxford: Oxford University Press, USA.
Stroh, A. N., (1962) “Steady State Problems in Anisotropic Elasticity,” J. Math. and Phys., 41, 77-103.
Sturges, D. J., (1985) “Quality — The Critical Challenge,” The Leading Edge, Fall, 2-7, (General Electric Company, Cincinnati, OH).
Tsukahara, Y., (1991) “Analysis of the Elastic Wave Excitation in Solid Plates by Phase Velocity Scanning of a Laser Beam,” Appl. Phys. Lett., 59(19), 2384-2385.
Veidt, M., and Sachse, W., (1994) “Ultrasonic Point-source/Point-receiver Measurements in Thin Specimens,” J. Acoust. Soc. Am., 96(4), 2318-2326.
Veidt, M., and Sachse, W., (1994) “Ultrasonic Evaluation of Thin Fiber-Reinforced Laminates,” J. Composite Materials, 28(4), 329-341.
Watrasiewicz, B. M., and Rudd, M. J., (1976) “Laser Doppler Measurements, ” Butterworths, London, 19, England.
Weaver, R. L., and Pao, Y. H., (1982) “Axisymmetric Elastic Waves Excited by a Point Source in a Plate,” J. Appl. Mech., 49, 821-836.
White, R. M., and Voltmer, F. W., (1965) “Direct Piezoelectric Coupling to Surface Elastic Waves,” Appl. Phys. Lett., 7, 314-316.
Wu, G. Y., Lee, C. K., Lin, S., Wakabayashi, T., and Ono, K., (1999) “Laser Doppler Interferometer for Vibration of Rotating Curved Surfaces,” SPIE’99 Annual Meeting.
Wu, T. T., Fang, J. S., and Liu, P. L., (1995) “Detection of the Depth of a Surface Breaking Crack Using Transient Elastic Waves,” J. Acoust. Soc. Am., 97(3), 1678-1686.
Wu, T. T., and Chai, J. F., (1994) “Propagation of Surface Waves in Anisotropic Solids: Theoretical Calculation and Experiment,'' Ultrasonics, 32(1), 21-29.
Wu, T. T., and Chen, Y. C., (1996) “Dispersion of Laser Generated Surface Waves in an Epoxy-Bonded Layered Medium,” Ultrasonics, 34, 793-799.
Wu, T. T., and Gong, J. H., (1993) “Application of Transient Waves to the Nondestructive Evaluation of Plate Structure with Cavity or Inclusion,” J. Acoust. Soc. Am., 94(3), 1453-1460.
Wu, T. T., and Ho, Z. H., (1990) “Anisotropic Wave Propagation and its Application to NDE of Composite Material,” Experimental Mechanics, 30(4), 313-318.
Wu, T. T., and Chen, Y. Y., (1999) “Analyses of Laser Generated Surface Waves in Delaminated Layered Structures Using Wavelet Transform,” J. Appl. Mech., ASME, 66(2), 507-513.
Wu, T. T., and Chiu, S. T., (1992) “On the Propagation of Horizontally Polarized Shear Waves in a Thin Composite Laminate Plate,” Ultrasonics, 30(1), 60-64.
Wu, T. T., and Liu, Y. H., (1999) “Inverse Analyses of thickness and elastic properties of a bonding layer using Laser Generated Surface Waves,” Ultrasonics, 37, 23-30.
Wu, T. T., and Liu, Y. H., (1999) “On the Measurement of Anisotropic Elastic Constants of Fiber Reinforced Composite Plate Using Ultrasonic Bulk Wave and Laser Generated Lamb Wave,” Ultrasonics, 37, 405-412.
Wu, W. J., Lee, C. K., Hsieh, C. T., (1998) “Signal Processing Algorithms for Doppler Effect Based Nanometer Positioning systems,” Jpn. J. Appl. Phys., 38, 1725-1729.
Yamanaka, K., Nagata, Y., and Koda, T., (1992) “Generation of Dispersive Acoustic Waves by the Phase Velocity Scanning of a Laser Beam,” Review of Progress in QNDE, 11, edited by O. D. Thompson and D. E. Chimenti, 633.
Yamanaka, K., Nagata, Y., and Koda, T., (1991) “Selective Excitation of Single-Mode Acoustic Waves by Phase Velocity Scanning of a Laser Beam,” Appl. Phys. Lett., 58 (15), 1591-1593.
張謙琳, 胡建愷 (1994) “複合材料超聲檢測的新技術:1.超聲波技術”, 應用聲學, 14卷4期, 38-42.
許明翔, 王耀俊 (1994) “單向複合纖維材料彈性係數的超聲波量測”, 應用聲學, 15卷1期, 1-4.
王小民, 李明軒 (1997) “用相速度測量數據反演單向纖維增強複合材料板的彈性常數” , 應用聲學, 17卷5期, 25-29.
王小民, 李明軒 (1997) “複合材料的超聲波檢測與評價” , 應用聲學, 17卷6期, 39-44.
留志宏 (1998) “應用超音波量測薄層系統材料常數與量測的技術開發”, 碩士論文, 台灣大學機械工程研究所.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top