|
[1] Alemany, A., Moreau, R., Sulem, P. L. and Frisch, U. (1979) J. de Meca. Th. et Appl. 18, 277. [2] Alf ven, H. (1950) Cosmical Electrodynamics, Oxford University Press, London New York. [3] Batchelor, G. K. (1958) Small-scale variation of convective quantities like temperature in turbulent uid: part 1. General discussion and the case of small conductivity, J. Fluid Mech. 5, 113. [4] Batchelor, G. K., Howells, I. D. and Townsend, A. A. (1958) Small-scale variation of convected quantities like temperature in turbulent uiD: part 2. the case of large conductivity, J.Fluid Mech. 5, 134. [5] Bell, D. M., Ferziger, J. H. and Spalart, P. R. (1992) Direct numerical simulation of the at plate boundary layer with dissipative scalar, J.Fluid Mech. [6] Binney, J. J., Dowrick, N. J., Fisher, A. J. and Newman M. E. J. (1992) The theory of critical phenomena, Clarendon Press. Oxford. [7] Biskamp, D. (1993) Nonlinear Magnetohydrodynamics, (Cambridge University Press, Cambridge). [8] Boston,N. E. J. and Burling, R. W. (1972) An invetigation of high-wavenumber temper- ature and velocity spectra in air, J.Fluid Mech. 55, 473-492. [9] Bremhost, K. and Krebs, L. (1992) Experimentally determined turbulent Prandtl num- bers in liquid sodium at low Reynolds numbers, Int. J. Heat Mass Transfer. 35, 351-359. [10] Chang, C. C., Lin, B. S. and Wang, C. T. (2001) Renormalization group analysis of tur- bulence and the smogorinsky model for large-eddy simulation, Submitted for publication in Proc. R. Soc. London. [11] Chen, S. Doolen, G., Kraichnan, R. H. and She, Z. S. (1993) On statistical correlations between velocity increments and locally averaged dissipation in homogeneous turbulence, Phys. Fluids A, 5, 458. [12] Creswick, R. J., Farach, H. A. and Poole, C. P. (1992) Introduction to renormalization group methods in physics, John Wiley & Sons, Inc. New York. [13] Cowling, T. G. (1963) Magnetohydrodynamics, John Wiley& Sons,NewYork. London, Third printing. [14] Deardor, W. J. (1970) J. Fluid Mech. 41, 453. [15] Elsasser, W. M. (1946) Phys. Rev. 69, 106.; 70, 202 (1946); 72, 821 (1947); 79, 183 (1950). [16] Eyink, G. L. (1994) The renormalization group method in statistical hydrodynamics, Phys. Fluids 6, 3063. [17] Frisch, U. (1995) Turbulence {The Legacy of A.N. Kolmogorov, (Cambridge University Press, Cambridge). [18] Forster, D. ,Nelson, D. R. and Stephen, M. J. (1977) Large distance and long time properties of a randomly stirred uid, Phys. Rev. A 16, 732. [19] Fuch, H. (1973) Heat transfer to owing sodium, Thesis, Institut f? ur Reaktorforschung, W?urenlingen, Schweiz, EIR, Bericht-Nr. 241. [20] Gibson, C. H. and Schwarz, W. H. (1963) The universal equilibrium spectra of turbulent velocity and scalar elds, J. FluidMech. 16, 365. [21] Gibson, C. H. (1968) Fine structure of scalar elds mixed by turbulence: 2. Spectral theory, Phys. Fluids. 11, 2316. [22] Goldenfeld, N. (1992) Lectures on phase transitions and the renormalization group, Addison Wesley Publishing Com. [23] Grant, H. L., Hughes, B. A., Vogel, W. M. and Moillient, A. (1968) The spectrum of temperature uctuations in turbulent ow, J. Fluid Mech. 34, 423-442. [24] Gurvich, A.S. and Zubkovski, S. L. (1966) Evaluation of structural characteristics of temperature pluses in the atmosphere, Izv. Acad. Sci., USSR, Atmos. Oceanic Phys. 2, 118-120. [25] Hatori, T. (1984) Kolmogorov-Style argument for the decaying homogeneous MHD tur- bulence, J.Phys. Soc. Japan 53 8, 2539-2545. [26] Hu, B. (1982) Introduction to real-space renormalization-group methods in critical phe- nomena, Physics Reports 91 5, 233-295. [27] Kasagi, N., Tomita, Y. and Kuroda, A. (1992) Direct numerical simulation of passive scalar eld in a turbulent channel ow, ASME Journal of Heat Transfer, 114, 598. [28] Kays, W. M. (1994) Turbulent Prandtl number{Where are we?, ASME Journal of Heat Transfer, 116, 284. [29] Kerr, R. M. (1990) Velocity, scalar and transfer spectra in numerical turbulence, J. Fluid Mech. 211, 309-331. [30] Kim, J. and Moin, P. (1987) Transport of passive scalars in a turbulent channel ow, Proceedings of the Sixth International Symposium on Turbulent Shear Flow, 85-96. [31] Kim, C. B. and Yang, T. J. (1999) Renormalization-group analysis on the scaling of the randomly-stirred magnetohydrodynamic plasmas, Physics of Plasmas 6 7, 2714-2720. [32] Kraichnan, R. H. (1968) Small-scale structure of a sclar eld convected by turbulence, J. Fluid Mech. 11, 945. [33] Kraichnan, R. H. (1976) Eddy viscosity in two and three dimensions, J. Atmospheric Sciences 33, 1521. [34] Kraichnan, R. H. (1987) An interpretation of the Yakhot-Orszag turbulence theory, Phys. Fluids 30, 2400. [35] Laufer, J. (1954) NACA Tech. Rep. 1174. [36] Leslie, M. and Metails, O. (1996) New trends in large-eddy simulations of turbulence, Ann. Rev. Fluid Mech. 28. [37] Liang, W. Z. and Diamond, P. H. (1993) A renormalization group analysis of two- dimensional magnetohydrodynamic tubulence, Phys. Fluids B 5, 63. [38] Lin, B. S., Chang, C. C. and Wang, C. T. (2001) Renormalization group analysis for thermal turbulent transport, (to appear in Physical Review E., January, 2001). [39] Leamon, R. J., Smith, C. W. and Ness, N. F. (1998) Characteristics of magnetic uc- tuations within coronal mass ejections: The January 1997 event, Geophysical Research Letters 25 14, 2505-2508. [40] Leslie, D. C. and Quarini, G. L. (1979) The application of turbulence theory to the formulation of subgrid modelling procedures, J.Fluid Mech. 91, 65. [41] Lesieur, M. (1990) Turbulence in uids: stochastic and numerical modeling, (Dordrecht; Boston: Kluwer Academic Publishers). [42] Matthaeus, W. H., Goldstein, M. L. and Smith, C. (1982) Evaluation of magnetic helicity in homogeneous turbulence, Phys. Rev. Lett. 48, 1256-9. [43] McComb, W. D. (1990) The physics of uid turbulence, (Oxford University Press Inc., New York). [44] Moin, P. (1997) Progress in large-eddy simulation of turbulent ows AIAA 97-0749. [45] Moin, P. and kim, J. (1982) Numerical investigation of turbulent channel ow, J. Fluid Mech. 118, 341-377. [46] Monin, A.S. and Yaglom, A. M. (1981) Statistical uid mechanics: Mechanics of turbu- lence , Vol. 2 (Cambridge, Mass.: MIT Press). [47] Nelkin, M. (1974) Turbulence, crtical phenomena and intermittency, Phys. Rev. A 9, 388. [48] Pao, Y.H. (1965) Structure of turbulent velocity and scalar elds at large wavenumbers, Phys. Fluids 8, 1063. [49] Rogallo, R. S. and Moin, P. (1984) Numerical simulations of turbulent ows, Ann. Rev. uid Mech. 16, 99. [50] Rose, H. A. (1977) Eddy viscosity, eddy noise and sugrid-scale modelling, J. Fluid Mech. 81, 719. [51] Rose, H. A. and Sulem, P. L. (1978) Fully developed turbulence and statistical mechanics, J. Phys. France, 441. [52] Schumann, U. (1975) Subgrid scale model for nite dierence simulations of turbulent ows in plane channels and annuli, J. of Computational Physics. 18, 376-404. [53] Sheri, N. and O''Kane, D. J. (1980) Sodium eddy diusivity of heat measurements in a circular duct, Int. J. Heat Mass Transfer. 24, 205-211. [54] Smargorinsky, J.(1963) Mon. Weath. Rev. 91. [55] Smith, L. M. and Woodru, S. L. (1998) Renormalization-Group analysis of turbulence, Annu. Rev. Fluid Mech. 30, 275. [56] Teung, P. K. and Zhou, Y. (1997) On the universality of Kolmogorov constant in nu- merical simulations of turbulence, Phs. Rev. E. [57] Velli, M., Grappin, R. and Mangeney, A. (1990) Solar wind expansion eects on the evolution of hydromagnetic turbulence in the interplanetary medium, Computer physics Communications 59, 153-162. [58] Verma, M. K. (1999) Mean magnetic eld renormalization and Kolmogorov''s energy spectrum in magnetohydrodynamic turbulence, Physics of Plasmas, 6 5, 1455-1460. [59] Wang, L. P., Chen, S., Brasseur, J. G. and Wyngaard, J. C. (1996) Examination of hypothesis in the Kolmogorov rened turbulent theory through high resolutions: Part 1. Velocity eld, J.Fluid Mech. 309, 113. [60] Wilson, K. (1972) Feynman-graph expansion for critical exponents, Phys. Rev. Lett. 28, 548. [61] Wilson, K. and Kogut, J. (1974) The renormalization group and the expansion, Phys. Rep. 12C, 75. [62] Yakhot, V. and Orszag, S. A. (1986a) Renormalization group analysis of turbulence. I. Basic theory, J. Sci. Comput. 1, 3. [63] Yakhot, V. and Orszag, S. A. (1986b) Renormalization group analysis of turbulence, Phys. Rev. Lett. 57, 1722. [64] Yakhot, V., Orszag, S. A. and Yakhot, A. (1987) Heat Transfer in turbulent uids:1. Pipe ow, Int. J. Heat Mass Transfer. 30, 15-22. [65] Yeomans, J. M. (1992) Statistical mechanics of phase transitions, Clarendon Press, Oxford. [66] Zhou, Y., Vahala, G. and Hossain, M. (1988) Renormalization-group theory for the eddy viscosity in subgrid modeling, Phys. Rev. A 37, 2590. [67] Zhou, Y. and Vahala, G. (1993) Renormalization-group estimates of transport coeÆ- cients in the advection of a passive scalar by incompressible turbulence, Phys. Rev. E 48, 4387.
|