跳到主要內容

臺灣博碩士論文加值系統

(44.220.62.183) 您好!臺灣時間:2024/02/29 03:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾源倉
研究生(外文):Yuan-Chang Taeng
論文名稱:超音波在聲帶生物力學之應用
論文名稱(外文):Ultrasonography for Vocal Fold Biomechanics
指導教授:邵耀華
指導教授(外文):Yio-Wha Shau
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:67
中文關鍵詞:超音波假像彩色都卜勒超音波影像聲帶黏膜波動傳導速度彈性係數
外文關鍵詞:Ultrasound artifactColor Doppler imageVocal foldMucosal wave velocityElasticity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:451
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:1
本研究以臨床用超音波儀器來觀察高頻振動的運動,試圖了解超音波是觀察高頻的振動的機制。進一步應用在人體聲帶的振動,發展一個非侵入式評估聲帶機械特性的測量方法。
聲帶的振動在正常的發聲功能中扮演著重要的角色。在發音時,聲帶黏膜與空氣介面的運動會產生特有的彩色超音波假象,此圖形可以協助聲帶的定位。在離體(in vitro)實驗中,我們使用橡皮筋模擬高頻振動的軟組織,以觀察彩色都卜勒超音波成像原理。在超音波假象(artifacts)中,條紋的寬度與橡皮筋的振動頻率和超音波的影像頻率(frame rate)有關。軟組織的振動振幅、頻率和聲波阻抗是影響假象的形態。以邊緣固定的有限波動物理模式,本研究估計成年人的平均聲帶黏膜波動傳導速度(mucosal wave velocity);對男性而言(N=4),當發音頻率在85~310Hz之間和適當的聲音強度時,平均黏膜波動傳導速度介於2.1~10m/s,而對女性而言(N=3),聲音頻率在180~480Hz之間時,平均黏膜波動傳導速度介於5.0~16m/s。對男性而言,在低音調時,有效的聲帶的振動長度約為1.4~1.6cm;而女性則是1.3~1.5cm。在高頻率的發聲時,聲帶的長度伸長到1.7~1.8cm且聲帶的應力-應變關係並不是線性關係。以正常的聲帶密度值估計男性的楊氏係數約在37~915kPa,女性的楊氏係數約在120~ 1600kPa。本研究的結果顯示醫用超音波可以應用於人體聲帶的生物力學相關研究,配合臨床診斷評估聲帶的功能。

The vibratory movement of the vocal folds (VF) plays an important role in normal function of the phonation. During phonation the motion of mucosa-air interface generates a unique pattern of ultrasound artifacts which assist the identification of true vocal folds location. In vitro study using vibrating rubber string was conducted to investigate how the color Doppler image(CDI) displayed a vibrating soft tissue at high frequency. The width of artifacts strip was affected by the frequency of the vibrating string and the frame rate of ultrasound. The vibrating frequency, displacement velocity and acoustic impedance of the soft tissue were found to dominate the formation of color artifacts. Based on the model of finite wave with fixed ends, we estimated the mean mucosal wave velocity for adult volunteers. The mean mucosal wave velocity for the male subjects(N=4) were found vary from 2.1~10m/s in frequency range of 85~310Hz at their comfortable pitch and intensity, while the females(N=3) typically had higher mucosal wave velocity that varied from 5.0~16.5m/s in frequency range 180~480Hz. The effective vibrating lengths of vocal cord in low-pitch measured with CDI were about 1.4~1.6cm for males and 1.3~1.5cm for female. The vocal cord’s length extended to about 1.7~1.8cm in high-pitch and the stress-strain relation was nonlinear. Based on the norminal value of VF mass density, the Young’s moduli were estimated about 30~915kPa for male and 120~1600kPa for female.

目錄
中文摘要…………………………………………….………………….Ⅰ
英文摘要………………………………………………………………Ⅱ
目錄……………………………………………………………………..Ⅲ
表目錄…………………………………………………………………..Ⅵ
圖目錄………………………………………………………………..…Ⅶ
第一章 緒論……………………………………………………………1
1-1 前言……………………………………………………………...1
1-2 文獻回顧………………………………………………………1
1-3 研究動機與目的………………………………………………...3
1-4 論文架構………………………………………………………...4
第二章 研究原理與聲帶的結構………………………………………5
2-1 波動…………………………………………………………...…5
2-1-1 行進波……………………………………………………5
2-1-2 駐波……………………………………………………...…7
2-1-3 波動方程式……………………………………………...…8
2-1-4 弦上的波速……………………………………………...…8
2-1-5 聲帶上的應用…………………………………………...…9
2-2 聲帶的結構……………………………………………………9
2-2-1 喉部的解剖………………………………………………...9
2-2-2 聲帶的顯微構造………………………………………….10
2-2-3 聲帶織組之生物力學特性……………………………….11
2-2-4 喉部肌肉對聲帶的調整……………………………….…12
2-3 醫用超音波基本原理……………………………………….…14
2-3-1 亮度模式………………………………………………….14
2-3-2 彩色都卜勒模式……………………………………….…15
第三章 實驗方法與步驟………………………………………………16
3-1 實驗設備…………………………………………………….…16
3-2 實驗方法…………………………………………………….…18
3-2-1 波動傳導速度………………………………………….…18
3-2-2 人體超音波影像的擷取………………………………….19
3-3 實驗步驟…………………………………………………….…20
3-3-1 假體波動傳導速度的測量………………………..…20
3-3-2 以超音波觀察假體的波動情形…………………..…20
3-3-3 以超音波觀察模擬駐波的假體模型 D………….21
3-3-4 以超音波觀察聲帶運動……………………………….…21
3-4 資料的分析與處理………………………………………….…22
3-4-1 假體的波動傳導速度……………………………..…22
3-4-2 超音波掃描速度………………………………………….22
3-4-3 測量超音波影像中的波長…………………………….…23
3-4-4 利用假像的輪廓測量橡皮筋的長度……………...…23
3-4-5 利用假像的輪廓測量聲帶的長度………………...…23
3-5 實驗對象…………………………………………………….…24
第四章 實驗結果與討論………………………………………………25
4-1 假體研究……...……………………………………………..…25
4-1-1 假體模型 B和模型C的波動傳導速度………...…25
4-1-2 超音波探頭掃描速度…………………………………….25
4-1-3 Strobe-motion……………………………………………..25
4-1-4 振動頻率與影像頻率的關係……………………….26
4-1-5 用假像的輪廓量橡皮筋的長度…………………...…27
4-1-6 振動速度與聲波阻抗………………………………….…27
4-2 人體實驗的結果……………………………………………….28
4-2-1 聲帶黏膜波動傳導速度………………………………….28
4-2-2 聲帶的機械特性……………………………………….…28
4-3 討論………………………………………………………….…29
4-3-1 假體研究的討論………...……………………………..…29
4-2-3 聲帶的機械特性………………………………………….32
第五章 結論與未來展望………………………………………………36
參考文獻………………………………………………………………..38

1. Baken RJ, Electroglottography. Journal of Voice 1992; Vol.6: 98-110.
2. Baken RJ & Orlinkoff RF, Clinical measurement of speech and voice, 2nd ed. Thomson Learning: Singular Publishing, 393-451,2000
3. Berke GS, Intraoperative measurement of the elastic modulus of the vocal fold. Part 1.Device development. Laryngoscope 1992; Vol.102: 760-769.
4. Berke GS & Smith ME, Intraoperative measurement of the elastic modulus of the vocal fold. Part 2. Preliminary results. Laryngoscope 1992Vol.102: 770-778
5. Beach JL & Keisey CA, Ultrasound doppler monitoring of vocal-fold velocity and displacement. J Acoust Soc Am 1969; Vol.46: 1045-1047
6. Childers DG, Smith AM & Moore GP, Relationships between electroglottograph, speech, and vocal cord contact. Folia Phoniat 1984; Vol.36:105-118
7. Fariborz AH & Titze IR, Elastic models of vocal fold tissues. J Acoust Soc Am 1991; Vol.90:1326-1331
8. Keller FJ, Gettys WE & Skove MJ, Physics: classical and modern, 2nd, McGraw-Hill, 1993:781-808
9. Ferrara K & DeAngelis G, Color flow mapping. Ultrasound Med Biol 1997; Vol.23:321-345
10. Friedman EM, Role of ultrasound in the assessment of vocal cord function in infants and children. Ann Otol Rhinol Laryngol 1997; Vol.106:199-209
11. Garel C, Legrand I, Elmaleh M, Contencin P & Hassan M, Laryngeal ultrasonography in infants and children: anatomical correlation with fetal preparations. Pedia Radiol 1990; Vol.20:241-244
12. Haji T, Mori K, Omori K, & Isshiki N, Experimental studies on the viscoelasticity of the vocal fold. Acta Otolaryngol(Stockh) 1992 Vol.112:151-159
13. Hamlet S L, Ultrasonic measurement of larynx height and vocal fold vibratory pattern. J Acoust Soc Am1980; Vol.68:121-126
14. Hanson DG, Jiang J, D’Agostino MM & Herzon G, Clinical measurement of mucosal wave velocity using simultaneous photoglottography and laryngostroboscopy. Ann Otol Rhinol Laryngol 1995; Vol.104:340-349
15. Harries M, Hawkins S, Hacking J & Hughes I, Changes in the male voice at puberty:vocal fold length and its relationship to the fundamental frequency of the voice. The Journal of Laryngology and Otology 1998;Vol.112:451-454
16. Hertz CH, Lindström K & Sonesson B, Ultrasonic recording of the vibrating vocal folds. Acta Otolaryng 1970; Vol.69:223-230
17. Hirano M, Morphological structure of the vocal cord as a vibrator and its variations. Folia Phoniat 1974 Vol.26:89-94
18. Hirano M, Phonosurgery: basic and clinical investigations. Otologia (Fukuoka) 1975; Vol.21(Suppl1):239-262
19. Holmer N-G, Kitzing P & Lindström K, Echo glottography. Acta Otolaryng 1973 Vol.75:454-463
20. Hoskins PR & McDicken WN, Colour ultrasound imaging of blood flow and tissue motion. British J Radiol 1997; Vol.70:878-890
21. Ishizaka K, Matsudaira M, Synthesis of voiced sound from a two-mass model of the vocal cord. Bell Syst Tech J 1972; Vol51:1233-1268.
22. Isshiki N, Ohkawa M & Goto M, Stiffness of the vocal cord in dysphonia — Its assessment and treament. Acta Otolaryngol (Stockh) 1985;Vol.Suppl.419:167-174
23. Kahane J, A morphological study of the human prepubertal and pubertal larynx. Am J Anat 1978 Vol.151:11-20
24. Miles KA, Ultrasound demonstration of vocal cord movements. British J Radiol 1989;Vol.62:871-872
25. Min YB, Titze IR& Alipour-Haghighi F, Stress and strain response of the vocal ligament. Ann Otol Rhinol Laryngol 1995 Vol.104:563569
26. Minifie FD, Kelsey CA & Hixon TJ, Measurement of vocal fold motion using an ultrasonic doppler velocity monitor. J Acoust Soc Am 1968; Vol.43:1165-1169
27. Nasri S, Sercarz JA & Berke GS, Noninvasive measurement of traveling wave velocity in the canine larynx. Ann Otol Rhinol Laryngol 1994; Vol.103:758-766
28. Ooi PJ, Chan HS & Soo KC, Color doppler imaging for vocal cord palsy. Hand & Neck 1995; Vol.17:20-23
29. Perlman AL, Titze IR & Cooper DS, Elasticity of canine vocal fold tissue. Journal of Speech and Hearing Research 1984; Vol.27:212-219
30. Perlman AL & Titze IR, Development of an in vitro technique for measuring elastic properties of vocal fold tissue. Journal of Speech and Hearing Research 1988; Vol.31:288-298
31. Raghavendra BN, Horii SC, Reede DL, Rumancik WM, Persky M & Bergeron RT, Sonographic anatomy of the larynx, with particular reference to the vocal cords. J Ultrasound Med 1987;Vol 6:225-230
32. Sasaki CT & Weaver EM, Physiology of the larynx. Am J Med 1997; Vol.103:9s-18s
33. Sawashima M, Fibreroptic observation of the larynx and other speech organs, In: Sawashima, M. and Cooper, F. S. ed. Dynamic aspects of speech production. Tokyo, Japan: Univ Tokyo Press, 31-46,1977
34. Schindler O, Gonella ML & Pisani R, Doppler ultrasound examination of the vibration speed of vocal folds. Folia Phoniatr 1990; Vol.42:265-272
35. Sloan SH, Berke GS, Garratt BR, Kreiman J & Ye M, Determination of vocal fold mucosal wave velocity in an in vivo canine model. Laryngoscope 1993;Vol.103: 947-953
36. Story BH & Titze JR, Voice simulation with a body-cover model of the vocal folds. J Acoust Soc Am 1995;Vol.97:1249-1260
37. Sulter AM & Albers FWJ, The effects of frequency and intensity level on glottal closure in normal subjects. Clin Otolaryngol 1996; Vol.21:324-327
38. Sung MW, Kim KH, Koh TY, Kwon TY, Mo JH, Choi SH, Lee JS, Park KS, Kim EJ & Sung MY, Videostrobokymography: A new method for the quantitative analysis of vocal fold vibration. Laryngoscope 1999; Vol.109:1859-1863
39. Tanaka S & Hirano M, Fiberscopic estimation of vocal fold stiffness in vivo using the sucking method. Arch Otolaryngol Head Neck Surg 1990; Vol.116:721-724
40. Titze IR, The physics of small-amplitude oscillation of the vocal folds. J Acoust Soc Am 1988; Vol.83:1536-1552
41. Titze IR, On the relation between subglottal pressure and fundamental frequency in phonation. J Acoust Soc Am 1989; Vol.85:901-906
42. Titze IR, Physiological and acoustic differences between male and female voices. J Acoust Soc Am 1989; Vol.85:1699-1707
43. Titze IR, Phonation threshold pressure:A missing link in glottal aerodynamics. J Acoust Soc Am 1992; Vol.91:2926-2935
44. Titze IR, Jiang JJ & Hsiao TY, Measurement of mucosal wave propagation and vertical phase difference in vocal fold vibration. Ann Otol Rhinol Laryngol 1993; Vol.102:58-63
45. Tran QT, Berke GS, Gerratt BR & Kreiman J, Measurement of Young’s modulus in the in vivo human vocal folds. Ann Otol Rhinol Laryngol 1993; Vol.102:584-591
46. Tucker HM, The larynx. Gerog Theieme Verlag, Thieme Medical Publishers, 1987:24-28
47. Ueda D, Yano K & Okuno A, Ultrasonic imaging of the tongue, mouth, and vocal cords in normal children:Establishment of basic scanning positions. J Clin Ultrasound 1993; Vol.21:431-439
48. Wolf KJ & Fobbe F, Color duplex sonography: principle and clinical applications, Gerog Theieme Verlag, Thieme Medical Publishers, 1995:5-13
49. Yumoto E, Yoshimi K & Toshihiro M,Vocal fold vibration viewed from the tracheal side in living human beings. Otolaryngol Head Neck Surg 1996; Vol.115:329-334
50. 蕭自佑,1999,音聲醫學概論,藝軒圖書出版社。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top