|
[1] Yang, W. (1988). Ab initio approach for many-electron systems without invoking orbitals: An integral formulation of density functional theory. Phys. Rev. A 38:5494-5503 [2] Yang, W. (1988). Thermal properties of many electron system: An integral formulation of density functional theory. Phys. Rev. A 38:5504-5511 [3] Yang,W. (1988). Dynamic linear response of many-electron systems: An integral formulation of density functional theory. Phys. Rev. A 38:5512-5519 [4] Mermin, N.D. (1965). Thermal properties of the inhomogeneous electron gas. Phys. Rev. 137:A1441-A1443 [5]Kohn, W. and Sham, L.J. (1965).Self-consistent equations including exchange and correlation effects. Phys. Rev. 140: A1133-A1138 [6]Gross, E.K.U. and Kohn, W. (1985). Local density-functional theory of frequency-dependent linear response. Phys. Rev. Lett. 55:2850-2852 [7]Hohenberg, P. and Kohn, W. (1964). Inhomogeneous electron gas . Phys. Revs. 136:B864-B871 [8] Feynman, R.P. (1972). Statistical Mechanics. Reading, Mass.: Benjamin. [9] Feynman, R.P. and Hibbs, A.R. (1965) Quantum Mechanics and Path Integrals. New York: McGraw-Hill [10]Zangwill, A. and Soven, P. (1980). Density functional approach to local-field effects in finite systems: Photoabsorption in the rare gases. Phys. Rev. A 21: 1561-1572 [11] Hoffman, G.G., Pratt, L.R., and Harris, R.A. (1988). Monte Carlo integration of density-functional theory: fermions in a harmonic well. Chem. Phys. Lett. 148:313-316 [12] Parr, G.R. and Yang, W. (1989). Density-Functional Theory of Atoms and Molecules. New York: Oxford [13] Fetter, A.L. and Walecka, J.D. (1995). Quantum Theory of Many-Particle Systems. New York: McGraw-Hill [14] Mattuck, R.D. (1976). A Guide to Feynman Diagrams in the Many-Body Problem. New York: McGraw-Hill [15] Sakurai, J.J. (1994). Modern Quantum Mechanics Revised Edition. Addison-Wesley [16] Huang, K. (1987). Statistical Mechanics Second Edition. John Wiley & Sons
|