跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 08:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何奕樺
研究生(外文):HuYiHua
論文名稱:應變速率對足底軟組織機械性質之研究
論文名稱(外文):Effects of strain rate on the mechanical properties of plantar soft tissues of foot.
指導教授:邵耀華
指導教授(外文):Shua YW
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
中文關鍵詞:軟組織機械特性蹠骨
外文關鍵詞:soft tissuemechanical prpopertiesmetatarsus
相關次數:
  • 被引用被引用:3
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:1
為了探討應變速率對足底軟組織機械特性的影響,5-12MHz的超音波探頭以三個不同的最大負載速度3.75±0.2cm/s、6.23±0.4 cm/s、14.64±0.2cm/s,直接在足底軟組之上施19.6N/cm2的應力。記錄足底軟組織在動態受力下的厚度變化。
實驗的對象皆為足底正常的年輕人,共有5位女性及7位男性,平均年齡為25±2.4歲。實驗所得結果壓縮指標(compressive index:CI)、勁度(stiffness:Ep)以及能量散逸率(energy dissipation of ratio:EDR)等參數變化作為軟組織機械特性的指標。負載速度的變化會明顯地影響軟組織遲滯圈的負載相走勢,負載速度越高遲滯圈負載相越往上移。而卸載相是不會受到壓縮頻率而變化的。這現象會直接反映在EDR值的變化上頭。前足部的EDR值對應於三個頻率分別38.29±9.07%、43.42±8.31%及54.59±7.44%; 在後足部則為32.56±3.89%、36.08±6.04%及49.65±5.65%。EDR有明顯地因頻率而升高的現象。在CI方面,在本實驗的速度範圍內,不會受到負載速度改變的影響。前足除第一趾(61.78±2.73%)外的四趾(55.26±6.28%)有近似相同的數值。第一趾會稍大。後足部的CI(45.68±6.98%)則是比前足部小。Ep則和負載速度沒有直接的關連。
本實驗雖然無法真正模擬走路的負載速度,卻充分地說明負載速度的改變對EDR的影響,以及軟組織特性如何改變。軟組織遲滯圈曲線配合再上CI與EDR等參數,可以發現前足與後足因為構造上的不同,而有機械特性上的差異。

Loading-unloading apparatus that combined clinical ultrasound and load cell was built to investigate the effects of strain rate on the plantar soft tissue. A 5-12 MHZ linear array transducer was used to compress the soft tissues up to 19.6N/cm2, and three loading velocities 3.75±0.2cm/s, 6.23±0.4cm/s, 14.64±0.2cm/s was adopted. The changes in soft-tissue thickness and the compression force were recorded simultaneously, and the stress-strain could be derived directly.
Young subjects (five females and seven males) with no apparent foot diseases were enrolled in the study. The mechanical properties were based on their compressive index (CI), stiffness (Ep), and energy dissipation of ratio (EDR). For young subjects, the increase in loading velocity caused the stress-strain curve at the loading phase to shift upward. However, the unloading phase was not affected. This resulted an increase in the EDR. The EDR for fore foot (metatarsal heads) were about 38.29±9.07%, 43.42±8.31% and 54.59±7.44% that corresponding to increasing frequencies. The EDR for the heel pad were 32.56±3.89%, 36.08±6.04% and 49.65±5.65% respectively. Higher strain rate resulted in a larger EDR. The loading velocity had little influence on the CI. The metatarsal heads of the fore foot except the first toe (61.78±2.73%) have similar CI values (55.26 ±6.28%). The CI of the heel pad is smaller than that of the fore foot. No direct correlation was found between the Ep and the loading velocity.

英文摘要…………………………………………….…………………Ⅰ
摘要…………………………………………….……………………….Ⅱ
目錄……………………………………………………………………..Ⅲ
表目錄…………………………………………………………………..Ⅴ
圖目錄………………………………………………………………..…Ⅵ
第一章緒論……………………………………………………………1
1-1前言……………………………………………………………...1
1-2文獻回顧………………………………………………………1
1-3研究動機與目的………………………………………………...3
1-4論文架構………………………………………………………...4
第二章研究原理………………………………………………………..5
2-1材料力學理論………………………………………………...…5
2-2生物體的黏彈特性……………………………………...………6
2-3足底構造………………………………………………………9
2-2-1後足構造…………………………………………………...9
2-2-2前足構造………………………………………….10
2-4醫用超音波基本原理……………………………………….…10
第三章實驗方法與步驟………………………………………………12
3-1實驗方法…………………………………………………….…12
3-1.1力量的施予………………………………………………..12
3-1.2軟組織厚度變化…………………………………………..13
3-1.3下壓速度的設計…………………………………………..13
3-2實驗設備…………………………………………………….…13
3-3實驗步驟…………………………………………………….…15
3-3-1荷重轉換器校正……………...………………………..…15
3-3-2力與位移同步校正………………...…………………..…15
3-4實驗對象…………………………………………………….…16
3-5實驗步驟…………………………………………………….…16
3-6資料的分析與處理………………………………………….…18
第四章結果與討論………………………………………………19
4-1實驗結果……………………………………………..…19
4-1-1軟組織勁度與力量大小關係………………..………...…19
4-1-2軟組織勁度與壓縮頻率的關係………………………….19
4-1-3軟組織應力與應變的關係……………………………..20
4-1-4EDR與頻率的關係………………………………………20
4-1-5EDR與測量點的關係…………………………………20
4-1-6CI與Ep………………………………………………….21
4-2實驗討論……………………………………………………….20
4-2-1誤差分析………………………………………………….21
4-2-2軟組織的機械特性與壓縮頻率的關係……………….…23
4-2-3前足部與後足部的比較…….……………………………25
4-2-4同一個量測點下,EDR在個體中的差異………………..26
4-2-5可信度………………………………………………….…27
4-2-6實驗結果與文獻比較……………………………………28
4-2-7改變施力頻率的意義…………………………………….30
4-2-8水袋的影響與預先調節的意義…………………………30
4-2-9最大應力的比較…………………………………………31
4-2-10吸震能力的探討…………………………………………31
第五章結論……………………………………………………………32
參考文獻………………………………………………………………..34

1.Aerts P, De Clercq D. Deformation characteristics of the heel region of the shod foot during a simulated heel strike: the effect of varying midsole hardness. J Sorts Sci 1993; 11: 449-61.
2.Aerts P, Ker RF, De Clerzq D. The mechanical properties of the human heel pad: a paradox resolved. J. Biomechanics 1995;28;1299-1308.
3.Aerts P, Ker RF, De Clerzq D, Ilsley SW. The effects of isolation on the mechanics of the human heel pad. J Anat 1996;188:417-23.
4.Bennett MB, Ker RF. The mechanical properties of the human subcalcaneal fat pad in compression. J Anat 1990; 171: 131-8.
5.Fung YC. Bioviscoelastic solids. In: Fung YC, editor. Biomechanics: mechanical properties of living tissues, 2nd ed. New York: Springer-Verlag; 1993. p. 242-320.
6.Gooding GAW, Stress RM, Graf PM, Grunfeld C. Heel pad thickness: Determination by high-resolution ultrasonogrpahy. J Ultrasound Med 1985; 4: 173-4.
7.Hsu TC, Wang CL, Tsai WC, Kuo JK, Tang FT. Comparison of the mechanical properties of the heel pad between young and elderly adults. Arch Phys Med Rehabil 1998;79:1101-4.
8.Hsu TC, Wang CL, Shau YW, Tang FT, Li KL, Chen CY. Altered heel-pad mechanical properties in type 2 diabetic patients. Diabetic Med 2000;17:854-9.
9.Jørgensen U, Larsen E, Varmarken JE. The HPC-device: A method to quantify the heel pad shock absorbency. Foot Ankle 1989; 10: 93-8.
10.Jørgensen U, Bojsen-Møller F. Shock absorbency of factors in the shoe/heel pad. Foot Ankle 1989; 9: 294-9.
11.Kerr PS, Silver DA, Telford K, Andrews HS, Atkins RM. Heel-pad compressibility after clacaneal fractures: ultrasound assessment. J Bone Joint Surg [Br] 1994; 77-B: 505-6.
12.Ker RF. The time-dependent mechanical properties of the human heel pad in the context of locomotion. J. of Experimental Biology;199;1501-1508.
13.Ker RF. The design of soft collagenous load-bearing tissues. J Exp Biol 1999;202:3315-24.
14.Kinoshita H, Ogawa T, Kusuhara K, Ikuta K. In vivo examination of the dynamic properties of the human heel pad. Int J Sports Med 1993; 14: 312-9.
15.Kinoshita H, Francis PR, Murase T, Kawai S, Ogawa T. The mechanical properies of the heel pad in elderly adults. Eur J Appl Physiol 1996; 43: 404-9.
16.Prichasuk PM, Siriwongpairat P. The heel-pad compressibility. Clin Orthop Relat Research 1994; 300: 197-200.
17.Rome K, Cambell R, Flint A, Haslock I. Reliability of weight-bearing heel pad thickness measurements by ultrasound. Clin Biomech 1998;13:374-375.
18.Sarrafian SK. Functional anatomy of the foot and ankle. In: Sarrafian SK, editor. Anatomy of the foot and ankle, descriptive, topographic, functional. 2nd ed. Philadelphia: J.B. Lippincott; 1993. P. 474-602.
19.van Hoslbeeck M, Introcaso JH. Musculoskeletal ultrasonography. Radiol Clin N Am 1992; 30: 907-25.
20.Wang CL, Cheng CK, Hang YS, Tang-Kue Liu. Change of shock absorbing characteristics of the heel pad after running. Biomed Eng Appl Basis Comm 1994; 6: 199-203.
21.Wang CL, Shau YW, Hsu TC, Chen HC, Chien SH. Mechanical properties of heel pads reconstructed with flaps. J Bone Joint Surg [Br] 1999;81-B:207-11.
22.Zheng YP, Choi YKC, Wong K. Biomechanical assessment of plantar foot tissue in diabetic patients using an ultrasound indentation system. Ultrasound in Med. & Bio. 2000;26;451-456.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top