跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/07 20:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝發華
研究生(外文):Fa-Hwa Shieh
論文名稱:壓電驅動半圓球殼振動陀螺儀原理與誤差分析
論文名稱(外文):Theory and Error Analysis of a Vibrating Hemispherical Gyroscope
指導教授:張家歐周傳心
指導教授(外文):Chia-Ou ChangChan-Shin Chou
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:268
中文關鍵詞:振動陀螺儀Niordson殼理論壓電殼橢圓軌跡微擾理論多重尺度法全圓周角度力平衡
外文關鍵詞:vibrating gyroscopeNiordson''s shell theorypiezoelectric shellperturbation theorymultiple-scale methodwhole-angle-trackingforce-to-balance
相關次數:
  • 被引用被引用:11
  • 點閱點閱:727
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本文是探討壓電驅動半圓球殼振動陀螺儀的設計與操作原理,以作為設計、製造及控制的依據,並可進一步作為微小化基礎。
首先以Niordson的彈性薄殼理論為基礎,採用Kirchhoff-Love的薄殼假設,先延伸Niordson的彈性薄殼理論至均質、厚度方向極化、上下表面鍍上電極的壓電陶瓷薄殼,由三維簡正坐標中的組成律開始,推導至二維曲面坐標中的組成律。
對於彈性半球形薄殼外面貼著壓電薄殼的機電耦合系統,亦以Niordson的彈性薄殼理論為基礎,配合漢彌頓原理及Lord Rayleigh的半圓球殼假設,據以推導包含旋轉的壓電驅動半圓球殼振動陀螺儀的運動方程式,以及探討影響運動方程式中各項係數的因素,以作為設計與製造的依據。
在考量實際存在材質與製造上的容許誤差,因此建立一般情況的振動陀螺儀誤差模型,並以多重時間尺度法(multiple time scale),求解在無角速度輸入及自由振動時的振動行為,並分別在時域與橢圓軌跡域予以解析,以作為控制上的依據。
對有誤差存在的非理想振動陀螺儀,先做頻率域分析,在依據頻率域分析結果,探討以線性方式補償各項誤差的程序。
對於振動陀螺儀的兩大感測模式,全圓周角度 (whole-angle-tracking)與力平衡 (force-to-balance)量測模式,分別探討其感測原理、振動控制的方式及誤差模式。
The paper considers the theory of a new type of vibrating hemispherical gyroscope, which comprises a hemispherical shell with discrete piezoceramic actuation and sensing elements bonded on the outer side and close rim of the shell.
Constitutive equations for a thin piezoceramic shell with thickness polarization and electrode-covered faces are derived using Niordson’s shell theory.
Coupled electromechanical equations of motion, describing the dynamics of the vibrating hemispherical gyroscope, are derived using Hamilton’s principle, Lord Rayleigh’s solution of the shell and Rayleigh-Ritz method.
The linear error model due to imperfections of materials or manufactural of tolorance of vibrating gyroscopes is established. The operation of the gyroscope without and with imperfections are described under free vibration.
The equation of motion of two operation modes of vibrating gyroscopes, whole-angle-tracking and forced-to-balance modes, are derived.
誌謝i
中文摘要ii
Abstractiii
目錄iv
圖目錄viii
第1章 緒論1
1.1前言1
1.2文獻回顧1
1.2.1振動陀螺儀1
1.2.2薄殼動力與壓電材料3
1.2.3薄殼振動陀螺儀動力分析5
1.3本文目的與內容介紹6
第2章 壓電殼組成律8
2.1Niordson的線性薄殼理論8
2.2簡正坐標中的壓電殼組成律14
2.3壓電殼應變能密度函數與電位能密度函數20
2.4曲面坐標系統中的壓電殼組成律24
第3章壓電驅動半圓球殼振動陀螺儀運動方程式30
3.1機電耦合系統30
3.1.1簡正坐標系統中的旋轉殼動能31
3.1.2曲面坐標系統中的旋轉殼動能32
3.1.3薄球殼應變能與電位能34
3.1.4外部負載38
3.2漢彌頓原理40
3.2.1半圓球殼振動陀螺儀與球坐標40
3.2.2變分原理的應用46
3.3運動方程式48
3.3.1近似解法的雷利解48
3.3.2致動方程式與感測方程式53
3.3.3感測係數61
3.3.4角頻率63
3.3.5機電耦合係數67
3.3.6壓電殼電容與電荷係數69
第4章 振動陀螺儀之誤差分析72
4.1理想振動陀螺儀感測原理72
4.1.1橢圓軌跡73
4.1.2感測原理74
4.2非理想振動陀螺儀自由振動81
4.2.1橢圓軌跡變化率81
4.2.2橢圓軌跡變化率中的常數項84
4.2.3橢圓軌跡變化率中的線性與非線性項87
4.3角頻率變化對軌跡的影響89
4.3.1僅有角頻率變化時的影響89
4.3.2彈性不均效應102
4.4衰減率變化對軌跡的影響111
4.4.1僅有衰減率變化時的影響111
4.4.2阻尼效應116
4.5一般性變化對軌跡的影響122
第5章 振動陀螺之振動控制128
5.1非理想振動陀螺儀頻率域分析128
5.2非理想振動陀螺儀線性補償132
5.3振動陀螺儀全圓周角度量測模式139
5.3.1全圓周角度量測模式的振動控制139
5.3.2全圓周角度量測模式時的角度量測144
5.4振動陀螺儀力平衡量測模式146
5.4.1力平衡量測模式的振動控制146
5.4.2力平衡量測模式時的角速度量測149
第6章 總結151
參考文獻153
附錄3-1 動能項廣義坐標計算162
附錄3-2 感測係數168
附錄3-3 角頻率175
附錄3-4 機電耦合係數188
附錄3-5 壓電殼電容193
附錄4-1 誤差cs項推導198
附錄4-2 誤差ks項推導201
附錄4-3 誤差ha項推導204
附錄4-4 誤差ca項推導207
附錄4-5 誤差gs項推導210
附錄4-6 誤差ka項推導213
附錄4-7 誤差hs項推導216
附錄4-8 一般項誤差推導219
附錄4-9 僅有角頻率變化時橢圓軌跡長軸傾角224
附錄4-10 僅有衰減率變化時橢圓軌跡長軸傾角228
附錄4-11 一般情形時橢圓軌跡長軸傾角232
附錄5-1 軟體模擬hyx與qyx補償程序233
附錄5-2 全圓周角度量測模式的結構配置251
附錄5-3 全圓周角度量測模式的振動控制推導254
附錄5-4 力平衡量測模式的結構配置257
符號說明259
Abe, H., T. Yoshida and K. Turuga. 1992. “Piezoelectric-Ceramic Cylinder Vibratory Gyroscope”, Japanese Journal of Applied Physics, Vol. 31, No. 1, pp. 3061-3063.
Bailey, T. and J. E. Hubbard. 1985. “Distributed Piezoelectric-Polymer Active Vibration Control of a Cantilever Beam”, AIAA Journal of Guidance Control and Dynamics, Vol. 8, No. 5, pp. 605-611.
Bernstein, J., S. Cho, T. King, A. Kourepenis, P. Maciel and M. Weinberg. 1993. “A Micromachined Comb-drive Tuning Fork Rate Gyroscope”, Digest IEEE/ASME Micro ElectroMechanical System (MEMS) Workshop, FL. USA, pp.143-148.
Boocock, D., L. Maunder. 1969. “Vibration of a Symmetric Tuning Fork", J. Mech. Eng. Sci. 11, 4.
Bryan, G. H. 1890. “On the Beats in the Vibrations of a Revolving Cylinder or Bell”, Proc. Cambridge Philos. Soc., Vol. VII, Nov. 24, pp. 101-111.
Burdess, J. S. and T. Wren. 1986. “The Theory of a Piezoelectric Disc Gyroscope”, IEEE Transactions on Aerospace and Electric Systems, Vol. AES-22, No. 4, pp. 410-418.
Burdess, J. S. 1986. “The Dynamics of a Thin Piezoelectric Cylinder Gyroscope”, Proc. Inst. Mech. Engrs. (London), Vol. 200, No. C4, pp.271-281.
Burdess, J. S. 1987. “Gyroscopic Devices”, U. K. Patent GB 2,154,739B, Dec. 21, 1987.
Chang, C. O., J. J. Hwang and C. S. Chou, 1996. “Modal Procession of a Rotating Hemispherical Shell”, International Journal of Solids and Structures, Vol. 33, No. 19, pp. 2739-2757.
Chou, C. S., C. O. Chang and J. J. Huang, 1996. “The Vibration of a Rotating Hemispherical Shell Excited by Electrostatic Field”, International Journal of Applied Electromagnetics in Materials, Vol. 7, No. 2, pp. 21-42.
Chou, C. S. and C. O. Chang, 1997. “Modal Precession of a Hemispherical Shell Gyro Excited by Electrostatic Field”, Japanese Journal of Applied Physics, Vol. 36, No. 11, pp. 7073- 7081.
Chou, C. S., C. O. Chang and J. J. Huang, 1999. “Vibration of a Hemispherical Shell Gyro Excited by an Electrostatic Field”, International Journal of Applied Electromagnetics in Materials, Vol. 10, No. 4, pp. 425-49.
Chou, C. S., J. W. Yang, Y. C. Huang and H. J. Yang. 1991. “Analysis on Vibrating Piezoelectric Beam Gyroscope”, International Journal of Applied Electromagnetics in Materials, Vol. 2, pp. 227-241.
Crandall, S. H., D. C. Karnopp, E. F. Kurtz, Jr. and D. C. Pridmore-Brown. 1968. Dynamics of Mechanical and Electromechanical Systems, Robert E. Krieger Publishing Co., Malabar Florida, pp. 291-326.
Crawley, E. F. and E. H. Anderson. 1990. “Detailed Models of Piezoceramic Actuation of Beams”, Journal of Intelligent Material Systems and Structures, Vol. 1, No.1, pp. 4-25.
Crewley, E. F. and J. DeLuis. 1987. “Use of Piezoelectric Actuators as Elements of Intelligent Structures”, AIAA Journal, Vol. 225, No. 10, pp. 1373-1385.
Crawley, E. F. and K. Lazarus. 1989. “Induced Strain Actuation of Isotropic and Anisotropic Plates”, Proceedings 30th AIAA/ASME/ASCE/AHS Structures Structural Dynamics and Materials Conference, Mobile, Alabama, AIAA Paper No. 89-1326, pp. 1451-1461.
Fanson, J. L. and T. K. Caughey. 1987. “Positive Position Feedback Control For Large Space Structures”, Proceedings 28th AIAA/ASME/ASC/AHS Structures Structural Dynamics and Materials Conference, Monterey, California, AIAA Paper No. 87-0902. pp. 588-598.
Fanson, J., G. Blackwood and C. Chu. 1989. “Active-Member Control of Precision Structures”, Proceedings of the 30th AIAA/ASME/ASCE/AHS Structures Structural Dynamics and Materials Conference, AIAA Paper 89-1329.
Forward, R. L. 1979. “Electronic Damping of Vibrations in Optical Structures”, Journal of Applied Optics, Vol. 18, No. 5, pp. 690-697.
Fox, C. H. J. and D. J. W. Hardie. 1984. “Vibratory Gyroscopic Sensors”, DGON Symposium Gyro Technology, Stuttgart.
Fox, C. H. J. 1988. “Vibrating Cylinder Rate Gyro: Theory of Operation and Error Analysis”, DGON Symposium Gyro Technology, Stuttgart.
Fox, C. H. J. 1994. “Analysis and Control of Imperfection Effects in Vibratary Gyros”, DGON Symposium Gyro Technology, Stuttgart.
Friedland, Bernard and Maurice F. Hutton. 1976. “Control system for angular displacement sensor”, U.S. Patent 3,992,952, Nov. 23, 1976.
Friedland, Bernard and Maurice F. Hutton. 1978. “Ellipticity control system for angular displacement sensor”, U.S. Patent No. 4,079,630, Mar. 21, 1978.
Friedland, Bernard and Maurice F. Hutton. 1978. “Theory and Error Analysis of Vibrating-Member Gyroscope”, IEEE Transactions on Automatic Control, Vol. AC-2345, No. 4, pp. 545-556.
Fujishima, S., T. Nakamura and K. Fujimoto. 1991. “Piezoelectric Vibratory Gyroscope Using Flexural Vibration of a Triangular Bar”, Forty-Fifth Annual Symposium on Frequency Control, pp 261-265.
Hagood, N. W. and E. F. Crawley. 1989. “Experimental Investigation into Passive Damping Enhancement for Space Structures”, Proceeding AIAA Guidance Navigation and Control Conference, Boston, Massachusetts, AIAA Paper No. 89-3436.
Hagood, N. W., Walter H. Chung and Andreas Von Flotow. 1990. “Modelling of Piezoelectric Actuator Dynamics for Active Structural Control”, Journal of Intelligent Material Systems and Structures, Vol. 1, No. 3, pp. 327-354.
Hagood, N. W. and E. H. Anderson. 1991. “Simultaneous Sensing and Actuation using Piezoelectric Materials”, SPIE Vol. 1543 Active and Adaptive Optical Components, pp. 409-412.
Hanagud, S., M. W. Obal and A. I. Calise. 1987. “Optical Vibration Control by the Use of Piezoceramic Sensors and Actuators”, Proceedings 28th AIAA/ASME/ASCE/AHS Structures Structural Dynamics and Materials Conference. Monterey, California. AIAA Paper No. 87-0959. pp. 987-997.
Harris, D. G. 1988. “START: a Novel Gyro for Weapon''s Guidance”, DGON Symposium Gyro Technology, Stuttgart.
Hunt, G. H. and A. E. Hobbs. 1965. “Development of an Accurate Tuning-Fork Gyroscope”, Symposium on Gyros, Proc. Inst. Mech. Eng. (London), 1964-1965, Vol. 179, No. 3E, pp.129-139.
Hwang, J. J., C. S. Chou and C. O. Chang, 1997. “ Precession of Vibrational Modes of A Rotating Hemispherical Shell”, ASME Journal of Vibration and Acoustics, Vol. 119, No. 4, pp. 612-617.
Jeanroy, A. 1994. “Low Cost High Dynamic Vibratory Rate Gyro”, DGON Symposium Gyro Technology, Stuttgart.
Johnson, B. and I. M. Longden. 1994. “Vibrating Structure Gyroscopes and Their Application”, DGON Symposium Gyro Technology, Stuttgart.
Koning, M. G. 1988. “Vibrating Cylinder Gyroscope and Method”, U.S. Patent 4,793,195, Dec. 27.
Konno, M., H. Nakamura and S. Sugawara. 1987. “Equivalent Mechanical Circuits of Tuning Fork Angular Rate Gyros”, Japanese Journal of Applied Physics, Vol. 26, No. 1, pp.150-152.
Langdon, R. M. 1982. “The Vibrating Cylinder Gyroscope”, The Marconi Review, Fourth Quarter, pp. 231-249.
Lawrence, A. 1993. Modern Inertial Technology Navigation Guidance and Control, Springer-Verlog, New York, 1993.
Lee, C. K. 1987. “Piezoelectric Laminates for Torsional and Bending Modal Control: Theory and Experiment”, Ph.D. Thesis, Cornell University, Ithaca, NY.
Lee, C. K., W.-W. Chiang and T. C. O''Sullivan. 1989. “Piezoelectric Modal Sensors and Actuators Achieving Critical Damping on a Cantilevered Plate”, Proceedings of the 30th AIAA/ASME/ASCE/AHS Structures Structual Dynamics and Materials Conference. Mobile, AL, pp.2018-2026.
Loper, E. J., D. D. Lynch. 1982. “The HRG: a New Low-noise Inertial Rotation Sensor”, 16th Joint Services Data Exchange for Inertial Systems, Los Angeles, CA, 1618 Nov.
Loper, E. J. and D. D. Lynch. 1983. “Projected System Performance Based on Recent HRG Test Results”, Proc. IEEE/AIAA 5th Digital Avionics System Conference, Seattle, October.
Loper, E.J., and D. D. Lynch. 1984. “Hemispherical Resonator Gyros: Status Report and Test Results”, National Technical Meeting, Institute of Navigation, Jan., pp.105-107.
Loper, E. J., D. D. Lynch and Stevenson, K. M. 1986. “Projected Performance of Smaller Hemispherical Resonator Gyros”, Position, Location, and Navigation Symposium Plans ‘86, Nov., pp.61-64.
Love, A. E. H., 1888. “On th Small Free Vibrations and Deformation on Thin Elastic Shells”, Phil. Transactions Roy. Soc., A179, pp. 491-546.
Loveday, P. W. 1996. “A Coupled Electromechanical Model of an Imperfect Piezoelectric Vibrating Cylinder Gyroscope”, Journal of Intelligent Material Systems and Structures, Vol. 7, No. 1, pp. 44-53.
Loveday, P. W. and Craig A. Rogers. 1998. “Modification of Piezoelectric Vibratory Gyroscope Resonator Parameters by Feedback Control”, IEEE Transactions on Ultrasonic, Ferroelectrics, and Frequency Control, Vol. 45, No. 5, pp. 1211-1215.
Lynch, D. D. 1973. “Rotating-Wave Rotation Detector and Method of Operating Same”, U.S. Patent 3,719,074. Mar. 1973.
Lynch, D. D. 1984. “Hemispherical Resonator Gyro”, in Ragan, R. R. (Ed.) “Inertial Technology for the Future”, IEEE Transactions On Aerospace and Electronic Systems, Vol. AES-20, No.4, pp. 414-444, July.
Maenaka, K., T. Fujita, Y. Konishi and M. Maeda. 1996. “Analysis of Highly Sensitive Silicon Gyroscope with Cantilever Beam as Vibrating Mass”, Sensors and Actuators A, Vol. 54, pp. 568-573.
Maghdi, P. M. 1956. “A Survey of Recent Progress in the Theory of Elastic Shells”, Applied Mechanics Reviews, Sep., pp. 365-368.
Mason, W. P. 1950, “Piezoelectric Crystals and Their Application to Ultrasonics”, Van Nostrand, N. Y.
Matthews, A. and F. J. Rybak. 1992. “Comparison of Hemispherical Resonator Gyro and Optical Gyros”, IEEE AES Magazine, May.
Matthews, A. and Varty, G. T. 1999. “Method for Reading out a Vibratory Rotation Sensors”, U.S. Patent 5,902,930, May. 11. 1999.
Matthews, A., Tseng, P. K. and Varty, G. T. 1999. “Low Quantization Method and Apparatus for Vibratory Rotation Sensors”, U.S. Patent 5,983,719, Nov. 16. 1999.
Miller, D. W., S. A. Collins and S. P. Peltzman. 1990. “Development of Spacially Convloving Sensors for Structural Control Applications”, Proceedings of the 31th AIAA/ASME/ASCE/AHS Structures Structural Dynamics and Materials Conference. Long Beach, CA AIAA Paper 90-1127.
Nayfeh, A. H. 1973. Perturbation Methods, John Wiley and Sons, Inc., New York.
Niordson, F. I. 1985. Shell Theory, North Holland, Amsterdam.
Peterson, L., J. Allen, J. Lauffer, A. Miller and R. Skelton. 1989. “An Experimental and Analytical Synthesis of Controlled Structure Design”, Proceedings of the 30th AIAA/ASME/ASCE/AHS Structure Structural Dynamics and Materials Conference, AIAA Paper 89-1170.
Putty, M. W. and K. Najafi. 1994. “A Micromachined Vibrating Ring Gyroscope”, Solid-State Sensor and Actuator Workshop, Hilton Head, South Carolina, pp. 213-220.
Putty, M. W. 1995. A Micromachined Vibrating Ring Gyroscope, Ph. D. Thesis, University of Michigan.
Quick, W. H. 1964. “Theory of the Vibrating String as an Angular Motion Sensor”, Transactions ASME, J. Appl. Mech., Sept., pp. 523-534.
Rayleigh, L. 1881. “On the Infinitesimal Bending of Surfaces of Revolution”, Proc. Math. Soc., London, Vol.13, pp. 4-16.
Rayleigh, L. 1945. The Theory of sound, Dover Publications, New York, Vol.1, p.395.
Rogacheva, Nellya N. 1994. The Theory of Piezoelectric Shells and Plates, CRC Press.
Söderkvist, J. 1991. “Piezoelectric Beams and Vibrating Angular Rate Sensors”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 38, No. 3, pp. 271-280.
Spanger, R. L. 1989. “Piezoelectric Actuators for Helicopter Rotor Control”, MIT Mater''s of Science Thesis, Dept. of Aeronautics and Astronautics.
Stiles, J. C. 1975. “Vibrating Ring Gyro”, U.S. Patent 3,926,475.
Scott, W. B. 1982. “Delco Makes Low-cost Gyro Prototype”, Aviation Week and Space Technology, 25 October.
Tiersten, H. F. 1969. Linear Piezoelectric Plate Vibrations, Plenum Press, New York.
van Randeraat, J. and R. E. Setterington. 1974. Piezoelectric Ceramics. Mullard Ltd., Second Edition.
Warburton, G. B. 1976. The Dynamical Behavior of Structures. Pergamon Press Ltd., Second Edition.
Washizu, K. 1980. Variational Methods in Elasticity and Plasticit, Pergamon Press Ltd., 3rd Edition.
Watson, W. S. 1990. “Vibrating Element Angular Rate Sensors for Precision Applications”, IEEE Position Location and Navigation Symposium, No. 90CH2811-8, pp. 17-20.
Ulitko, I. A. 1995. “Mathematical Theory of the Fork-Type Wave Gyroscope”, Proc. IEEE International Frequency Control Symposium, pp. 786-793.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top