跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/14 12:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳婉如
論文名稱:淨水污泥燒結產物對離子之界面反應研究
指導教授:林正芳林正芳引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:118
中文關鍵詞:淨水污泥燒結吸附三層模式
相關次數:
  • 被引用被引用:2
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
淨水污泥每日產量達24,500 ~ 293,000 m3,且產量日益增大,將會減少最終處置場所之使用年限,故本研究針對淨水污泥之資源化利用,經由燒結的程序,使淨水污泥得以燒結體的形態加以應用。本研究以電子顯微照相、X光繞射分析、比表面積測定及表面酸鹼滴定法來探討淨水污泥在高溫下燒結之晶體表面特性;並以平衡吸附實驗及競爭吸附實驗,輔以表面錯合模式模擬,以探討燒結產物與離子間之界面反應。
經成分分析,SiO2佔淨水污泥總組成之54%,其次依序為Al2O3及Fe2O3,分別佔總組成之21%及6.6%,其餘成分均為微量。燒結產物經由電子顯微照相、X光繞射分析及比表面積測定,發現淨水污泥中主要的結晶相為SiO2,且隨溫度增加而有減少的趨勢。淨水污泥經燒結形成緻密化的結構,比表面積為2 ~ 5m2/g。因燒結物之SiO2含量大於50%,表面位址多屬帶負電的位址,不利於吸附陰離子。
由平衡吸附實驗結果顯示,燒結物對陽離子之吸附率隨pH值上升而增大,於pH=4.8時,對Cr(Ⅲ)之吸附容量為1.40 mg/g燒結物,Cr(Ⅲ)之吸附不受背景電解質影響,為內層吸附離子;於pH= 6.0時,對Hg(Ⅱ)之吸附容量為0.43 mg/g燒結物,Hg(Ⅱ)受背景電解質影響,為外層吸附離子。Cr(Ⅲ)與燒結物之吸附競爭力大於Hg(Ⅱ)。基於平衡吸附實驗結果,以三層模式模擬結果發現Cr(Ⅲ)以Cr3+內層雙鉤及CrOH2+內層單鉤吸附於燒結物表面,反應之固有平衡常數pKint分別為3.5及7.7;Hg(Ⅱ)以HgOH+外層雙鉤吸附於燒結物表面,固有平衡常數pKint為-3.75。
Daily generation of water industry sludges accounts for about 24500 - 293000 m3 per day and the amount is increasing yearly. The final disposal of the waste water sludge becomes a severe burden for both the administration and the environment. Therefore, reuse seems to be a promising alternative for removal of these water work sludges from the system. This study applies sintering technology to convert water sludge to a useful and stable adsorption materials. The properties of the sintered materials were characterized using SEM, XRD, BET, and acid-base titration. In addition, adsorption experiments in conjunction with TLM simulation were employed for understanding the metal ions (Cr(III) and Hg(II)) interactions at the water/sintered materials interface.
The elemental analysis of original water sludges show the major constituents as SiO2 (54%), Al2O3(21%), and Fe2O3(6.6%). The SEM and XRD analyses on sintered materials also reveal that SiO2 is the principle compound of the matrix. The crystallized SiO2 decreases as sintering temperature increases. BET measurements gave the specific surface of 2 - 5 m2 per gram sintered materials. As composition of SiO2 is more than 50%, surface of the sintered materials become negatively charged.
Adsorption of Cr(III) and Hg(II) on the sintered materials show that sorption is dependent on system’s pH. The sorption densities are 1.40 mg Cr/g at pH 4.8 and 0.43 mg Hg/g at pH 6.0. Sorption of Cr(III) is unaffected by solution electrolyte. However, sorption of Hg(II) is significantly affected by solution electrolyte. Affinity of Cr(III) for the surface reacting sites seem to out-compete Hg(II). Simulation of the experimental results by TLM has revealed that Cr3+ forms inner-sphere bidentate complexes and CrOH2+ forms monodentate complexes. The intrinsic adsorption constants (pKint) for Cr3+ and CrOH2+ are 3.5 and 7.7, respectively; and for Hg(II) as out-sphere complex is -3.75.
第一章 緒論………………………………………………………………...1
1-1 研究動機………………………………………………………….1
1-2 研究內容………………………………………………………….2
第二章 文獻回顧…………………………………………...………………5
2-1 淨水污泥基本性質.……………………………….……………5
2-1-1 淨水污泥組成…………………………...…………………5
2-1-2 淨水污泥資源利用方向...…………………………………5
2-2 燒結理論…………………..……………………………………6
2-2-1 固態燒結………………………….……………………..…6
2-2-2 晶粒成長………………….………………………………..7
2-3 氧化物種類及物化特性………………………………………..9
2-3-1 氧化物之分類………………….…………………………..9
2-3-2 氧化矽…………………………………….………………10
2-3-3 氧化鋁……………….……………………………………10
2-3-4 氧化鐵…………………………………………………….11
2-4 金屬氧化物表面特性…………………………….…………...12
2-4-1 金屬氧化物表面酸鹼化學……………………………….12
2-4-2 金屬氧化物表面位址密度及分布…………………..…...15
2-5 吸附理論……………….………………………….…………..17
2-5-1 物理吸附與化學吸附…………….…………………..…..17
2-5-2 特定吸附與非特定吸附………………………………….18
2-6 固液界面吸附模式……………………………………………19
2-6-1 等溫吸附模式…………………….…………………..…..19
2-6-2 離子交換模式…………………………………………….20
2-6-3 表面錯合模式…………………………………………….21
2-6-4 金屬氧化物與陰、陽離子之表面錯合反應…………….28
2-6-5 離子強度對吸附反應之影響…………………………….30
2-7 本研究各離子之特性…………………………………………32
第三章 實驗設計與分析方法……………………….……………………35
3-1 淨水污泥之燒結…………………………...……………………35
3-2 吸附劑之製作、純化……………………………………………36
3-3 吸附劑表面特性鑑定………………………………………….37
3-3-1 比表面積之測定..………...……..………………………..37
3-3-2 表面酸鹼常數之測定…………..………………………...38
3-3-3 表面之晶相結構………………………………………….38
3-4 平衡吸附實驗……………………………...……………………39
3-4-1 動力吸附實驗…………...………..………………………39
3-4-2 批次吸附實驗………………..………………………...40
3-4-3沉澱平衡計算…………...………………………..……...41
3-5 吸附反應之表面錯合模式…………...……………………41
3-5-1 Cr(Ⅲ)在燒結物表面之錯合模式…………………...41
3-5-2 Hg(Ⅱ)在燒結物表面之錯合模式…………………..43
第四章 結果與討論………………………….……………………………47
4-1 淨水污泥性質分析………………………………………………47
4-1-1 淨水污泥組成…………………………….……..………..47
4-1-2 淨水污泥對Cr(Ⅲ)與Hg(Ⅱ)之吸附曲線………………...48
4-1-3 淨水污泥之比表面積測定……………………………….50
4-2 燒結物之表面特性...……………………………………………50
4-2-1 燒結物之顯微鏡照相……..……………………………...50
4-2-2 燒結物之比表面積測定…..……………………………...53
4-2-3 燒結物之XRD測定………………………….……………55
4-2-4 燒結物對Cr(Ⅲ)之吸附曲線…………………..…………56
4-2-5 燒結物之表面滴定結果…….…………………..………..59
4-3 各目標離子在燒結物表面之固液界面反應…………………...60
4-3-1 二價陰離子在燒結物表面之界面反應…………………60
4-3-2 Cr(Ⅲ)吸附平衡容量及背景電解質之影響……………...61
4-3-3 Hg(Ⅱ)吸附平衡容量及背景電解質之影響……………..64
4-4 競爭吸附…………………………………………..…………….69
4-5 模式模擬………………………………………………………...72
4-5-1 吸附平衡反應之模擬結果……………………………….72
4-5-2 TLM模式之敏感度分析…………………………………..78
4-5-3 競爭吸附之模擬結果………………………….…………80
第五章 結論與建議………………………………………...……………..87
5-1 結論………………….……………………………………...87
5-2 建議……………..….……………………………………….88
英文文獻…………………………………………………………………...89
中文文獻…………………………………………………………………...95
附錄A 分析比表面積之方法..…………………………………………..97
附錄B 表面酸鹼常數計算………………………………………………99
附錄C 沉澱平衡計算…………………………………………………..101
附錄D 本研究之實驗數據資料………………………………………..109
圖目錄
圖1-1實驗設計流程圖………………………………………………...3
圖2-1燒結三階段示意圖…………………...…………………………8
圖2-2單層模式示意圖…………………………………………...…23
圖2-3一般雙層模式示意圖………………………………..…..25
圖2-4擴散層模式示意圖…………………………………………….25
圖2-5Stern 三層模式示意圖…………………………………….….27
圖2-6三層模式示意圖…………………………………………..27
圖2-7四層模式示意圖…………………………………………..28
圖3-1實驗流程圖………………………..…………………...………45
圖4-1淨水污泥對Cr(Ⅲ)之吸附……………………………………49
圖4-2淨水污泥對Hg(Ⅱ)之吸附………………………………..49
圖4-3淨水污泥於不同壓力下之吸脫附曲線……………………….50
圖4-4燒結物之顯微照相…………………………………………….51
圖4-5燒結物之燒結溫度與比表面積關係圖………………………54
圖4-6淨水污泥燒結體950~1150℃之XRD疊圖……………………55
圖4-7不同燒結溫度之燒結物對Cr(Ⅲ)之吸附……………………57
圖4-8不同成型壓力之燒結物對Cr(Ⅲ)之吸附……………………57
圖4-9不同恆溫時間之燒結物對Cr(Ⅲ)之吸附……………………58
圖4-10燒結物表面滴定結果………………….…………………….58
圖4-11陰離子/燒結物平衡吸附反應…………………………………60
圖4-12Cr(Ⅲ)吸附容量Freundlich模擬參數作圖………………….62
圖4-13Freundlich模擬Cr(Ⅲ)吸附容量曲線………………………….62
圖4-14Cr(Ⅲ)吸附容量Langmuir模擬參數作圖……………………..63
圖4-15Langmuir模擬Cr(Ⅲ)吸附容量曲線…………………………63
圖4-16背景電解質對Cr(Ⅲ)之吸附影響…………………………….64
圖4-17Hg(Ⅱ)吸附容量Freundlich模擬參數作圖……………………66
圖4-18Freundlich模擬Hg(Ⅱ)吸附容量曲線………………………...66
圖4-19Hg(Ⅱ)吸附容量Langmuir模擬參數作圖……………………..67
圖4-20Langmuir模擬Hg(Ⅱ)吸附容量曲線………………………67
圖4-21背景電解質對Hg(Ⅱ)之吸附影響…………………………….68
圖4-22Cr(Ⅲ)與Hg(Ⅱ)在燒結物表面之競爭吸附結果……………...70
圖4-23TLM模擬Cr3+/燒結物內層單鉤吸附之結果………………….73
圖4-24TLM模擬CrOH2+/燒結物內層單鉤吸附之結果……………...74
圖4-25TLM模擬Cr3+/燒結物內層雙鉤吸附之結果………………….74
圖4-26TLM模擬CrOH2+/燒結物內層雙鉤吸附之結果……………...75
圖4-27TLM模擬Hg2+/燒結物外層單鉤吸附之結果…………………76
圖4-28TLM模擬HgOH+/燒結物外層單鉤吸附之結果……………76
圖4-29TLM模擬Hg2+/燒結物外層雙鉤吸附之結果…………………77
圖4-30TLM模擬HgOH+/燒結物外層雙鉤吸附之結果……………77
圖4-31site density 對TLM之敏感度分析……………………………79
圖4-32Ka1對TLM之敏感度分析…………………………………….79
圖4-33Cr3+外層雙鉤吸附之平衡常數對TLM之敏感度分析………..80
圖4-34TLM模擬Cr3+雙鉤/HgOH+雙鉤之競爭吸附結果……………82
圖4-35TLM模擬CrOH2+單鉤/HgOH+雙鉤之競爭吸附結果………84
表目錄
表2-1以表面錯合模式表示氧化物表面之典型反應式..…………...22
表2-2以金屬離子第一水解常數劃分與氧化物表面親和力之強弱………………………………………………………………30
表2-3以陰離子第一酸度常數劃分與氧化物表面親和力之強弱...31
表2-4Cr(Ⅲ)及Hg(Ⅱ)各物種之解離常數……………………..34
表3-1不同條件下燒結樣品編號………………..……………….…..36
表4-1淨水污泥之化學組成....……………………………………….47
表4-2不同條件下燒結物之比表面積………….…….……………...54
表4-3以三層模式模擬吸附結果時所選用之參數………………….72
英文文獻
Ainseorth, C. G., Girvin, D. C., Zachara, J. M., and Smith, S.C., (1989) ”Chromate Adsorption on Goethie: Effect of Aluminum Substitution,” Soil Sci. Soc. Am. J.,53,411-418.
Akcay,H., Kilinc, S., and Karapire, C., (1996) “A Comparative Study on the Sorption and Desorption of Hg, Th and U on Clay,” J. Radioanal. Nucl. Chem., 214, 51-66.
Anderson, P.A., and Benjamin, M. M. (1985) ”Effect of Silicon on the Crystallization and Adsorption Properties of Ferric Oxides,” Environ. Sci. Technol.,19,1048-1052
Armistead, C. G., Tyler, A. J., Hambleton, F. H., Mitchell, S. A., and Hockey, J. A., (1969) “The Surface Hydroxylation of Silica,” The Journal of Physical Chemistry, 73, 3947-3953
Barbieri, L. A. C. and Lancellotti ,I. (1999) “Bulk and Sintered Glass-Ceramics by Recycling Municipal Incinerator Bottom Ash,” Journal of the European Ceramic Society, 20, 1637-1643
Barrow, N. J., Bowden, J. W., Posner, A. M., and Quirk, J. P. (1980) ”Describing the Effects of Electrolyte on Adsorption of Phosphate by a Variable Charge Surface,” Aust. J. Soil Research, 18, 395-404
Benjamin, M. M., and Leckie, J. O. (1980) ”Adsorption of Metals at Oxide Interface: Effects of the Concentration of Adsorbate and Competing Metals,” in Contaminates and Sediments, Baker, R. A., Ed., Ann. Arbor Sci., Ann Arbor, Michigan.
Benjamin, M.M. and Leckie J.O. (1981) “ Multiple-Site Adsorption of Cd, Cu, Zn and Pb on Amorphous Iron Oxyhydroxides,” J. Colloid Interface Sci., 5, 209-221.
Blesa, Miguel A. and Egon Matijev’ (1989) “Phase Transformations of Iron Oxides, Oxohydroxides, and Hydrous Oxides in Aqueous Media”, Advances in Collide and Interface Science, 29,173-221
Bowen, H. J. M. (1979) Environmental Chemistry of the Elements, Acadmic Press, London, England.
Breeuwsma, A., and Lyklema, J. (1973) ”Physical and Chemical Adsorption of Ions in the Electrical Double Layer on Hematite (α-Fe2O3),” J. Colloid Interface Sci., 43, 437-448
Carrott,P. J. M., Ribeiro Carrott, M. M. L., and Nabais, J. M. V. (1997) “Influence of Surface Ionization on the Adsorption of Aqueous Mercury Chlorocomplexes by Activated Carbons,” Carbon, 36, 11-17
Chan, D., Perram, J. W., White, L. R., and Healy, T. W. (1975) ”Regulation of Surface Potential at Amphoteric Surface During Particle-Particle Interaction,” J. Chem. Soc. Fracday Trans., I, 71, 1046-1057.
Chang, K.S., Lin, C. F., Lee, D. Y., and Lo, S. L. (1993) ”Mechanistic Investigation of Copper Sorption on to γ-Al2O3 Using the Relaxation Technique,” Chemosphere, 27, 1397-1407.
Chang, K.S., Lin, C. F., Lee, D. Y., Lo, S. L., and Yasunaga, T. (1994) ”Kinetic of Cr(Ⅲ) Adsorption/Desorption at theγ-Al2O3/Water Interface by the Pressure-jump Technique,” J. Colloid Interface Sci., 165, 169-176
Coble, R. L. (1958) “Initial Sintering of Alumina and Hematite,” Journal of the American Ceramic Socirty., 41,55-62.
Coble, R.L. (1961) “Sintering Crystalline Solids. 1. Intermediate and Final State Diffusion Models,” Journal of Applied Physics., 32, 787-792
Davis, J. A., James, R. O., and Leckie, J. O. (1978) ”Surface Ionization and Complexation at the Oxide/Water Interface Ⅰ. Computation of Electrical Double Layer Properties in Sample Electrolytes,” J. Colloid Interface Sci., 63, 480-499.
Davis, J. A., and Leckie, J. O. (1978) ”Surface Ionization and Complexation at the Oxide/Water InterfaceⅡ. Surface Properties of Amorphous Iron Oxyhydroxide and Adsorption of Metal Ions,” J. Colloid Interface Sci., 67, 90-107.
Dyer, C., Hendra, P., Forslin, W., and Ranheimer, M. (1993) ”Surface Hydration of Aqueousγ-Al2O3 Studied by Fourier-Transform Ramanand Interface-Spectroscopy,” Spectrochim. Acta part A., 49, 691-705
Dzombak, D. A., and Morel, F. M. M. (1986) “Adsorption of Inorganic Pollutants in Aquatic Systems,” J. Hydraulic Eng., ASCE, 112, 588-598.
Dzombak, D. A., and Morel, F. M. M. (1990) Surface Complexation Modeling: Hydrous Ferric Oxide, John Wiley, New York.
German, R. M. (1996) Sintering Theory and Practice, Ch1, 1-22, John Wiley & Sons, Inc., New York
Gomez-Serrano,V., Macias-Garcia, A., Espinosa-Mansilla A., and Valenzuela- Calahorro, C. (1997) “Adsorption of Mercury, Cadmium and Lead from Aqueous Solution on Heat-Treated and Sulphurized Activated Carbon,” Water Research, 32, 1-4
Gunter, R. J. (1978) ”Characterization of Adsorption Polymers at Charged Silica-Aqueous Electrolyte Interface,” The Journal of Physical Chemistry, 82, 2210-2215
Hayes, K. F., and Leckie, J. O. (1987) ”Modeling Ionic Strength Effects on Cation Adsorption at Hydrous Oxides/Solution Interfaces,” J. Colloid Interface Sci.,115, 564-572.
Hayes, K. F., Papelis, C., and Leckie, J. O. (1988) ”Modeling Ionic Strength Effects on Anion Adsorption at Hydrous Oxides/Solution Interfaces,” J. Colloid Interface Sci., 125, 717-726.
Hayes, K. F., Redden, G., Ela, W., and Leckie, J. O. (1991) “Surface Complexation Models: An Evaluation of Model Parameter Estimation Using FITEQL and Oxide Mineral Titration Data,” J. Colloid Interface Sci., 142, 448-469.
Healy, T. W. and White, L. R. (1978) ” Ionizable Surface Group Models of Aqueous Interfaces,” Adv. Colloid Interface Sci., 9, 303-345.
Hohl, M., and Stumm, W. (1976)“Interaction of Pb2+ with Hydrousγ-Al2O3,” J. Colloid Interface Sci., 55, 281-288.
Horanyi, G. and Joo, P. (2000) “Application of the Radiotracer Technique for the Study of Specific Anion Adsorption on A12O3 in Acidic Medium,” J. Colloid Interface Sci., 231, 373-378
Huang, C. P., (1981)“The Surface Acidity of Hydrous solids,” in Adsorption of Inorganics at Solid/Liquid Interfaces, Anderson, M. A. and Rubin, A. J., Ed., Ann Arbor Sci. Ann Arbor, Michigan.
James, R.O., and Parks, G. A. (1982)“Characterization of Aqueous Colloids by Their Electrical Double Layer and Intrinsic Surface Chemical Properties,” Surface Colloid Sci.,12, 119-126.
Geelhoed,J. S., Tjisse, H., Willem, H. and Van, R. (1997) ”Phosphate and Sulfate Adsorption on Geothite: Single Anion and Competitive Adsorption,” Geochimica et Cosmochimica Acta, 61, 2389-2396
Kipling, J. J. and Peakall, D. B. (1957)“Reversible and Irreversible Adsorption of Vapours by Solid Oxides and Hydrated Oxidees,” J. Chem. Soc., 157, 834-842.
Kummert, R. and Stumm, W. (1980)“The Surface Complexation of Organic Acid on Hydrous γ-Al2O3,” J. Colloid Interface Sci., 75, 373-385.
Lakhdar Benyahya and Jean-Marie Garnier(1999) “Effect of Salicylic Acid upon Trace-Metal Sorption (CdII, ZnII, CoII and MnII) onto Alumina, Silica and Kaolinite as a Function of Ph,” Environ. Sci. Technol., 33, 1398-1407
Lin, C. F., Chang, K. S., Tsay, C. W., Lee, D. Y., Lo, S. L., and Yasunaga, T.(1997) ”Adsorption Mechanism of Gallium(Ⅲ) and Indium(Ⅲ) ontoγ-Al2O3,” J. Colloid Interface Sci.,188,201-208.
Marta Berka and Istvan Banyai(2000) ”Surface Complexation Modeling of K+, NO3-, SO42-, Ca2+, F-, Co2+ and Cr3+ Ion Adsorption on Silica Gel,” J. Colloid Interface Sci., 233, 131-135
Meng, X. and Letterman, R. D. (1993) “Modeling Ion Adsorption on Aluminum Hydroxide Modified Silica,” Environ. Sci. Technol., 27, 1924-1929
Meng X. and Letterman , R. D. (1993) “Effect of Component Oxide Interaction on the Adsorption Properties of Mixed Oxides,” Environ. Sci. Technol., 27, 970-975
Meng, X. and Letterman, R. D. (1996) “Modeling Cadmium and Sulfate Adsorption by Fe(OH)3/SiO2 Mixed Oxides,” Water Research, 30, 2148-2154
Meng, X., Hua, Z., Dermatas, D., Wang W. and Kuo H. Y. (1997) “Immobilization of Mercury(II) in Contaminated Soil with Used Tire Rubber,” Journal of Hazardous Materials, 57, 231-241
Mesuere, K., and Fish, W. (1992) ”Chromate and Oxalate Adsorption on Goethite 2. Surface Complexation Modeling of Competitive Adsorption,” Environ. Sci. Technol.,26,2365-2370.
Morel, F. M. M., and Hering, J. G. (1993) Principle and Applications of Aquatic Chemistry, John Wiley, New York.
Morel, F. M. M., Yeasted, J. G., and Westall, J. C. (1981) ”Adsorption Models: A Mathematical Analysis in the Framework of General Equilibrium Calculations,” in Adsorption of Inorganics at Solid-Liquid Interfaces, Anderson, M. A. and Rubin, A. J., Eds.,263-294, Ann Arbor Sci. Ann Arbor, Michigan.
Morrill, L. G., Mahilum, B. C., and Mohiuddn, S. H. (1982) ”Sorption, Degradation and Persistence,” in Organic Compounds in Soils, Ann Arbor Sci. Publishers, Ann Arbor, Michigan.
Nowok, J. W., Benson, S. A., Jones, M. L. and Kalmanovitch, D.P. (1990) “Sintering Behaviour and Strength Development in Various Coal Ashes”, Fuel, 69, 1020-1028.
Nieboer, E., and Jusys, A. A. (1988) “Biologic Chemistry of Chromium,” in Nriagu, J. O., and Nieboer, E. Ed.,”Chromium in the Natural and Human Environments,” John Wiley & Sons, Inc., New York
Osthols, E. (1994) “Thorium Sorption on Amorphous Silica,” Geochimica et Cosmochimica Acta, 59, 1235-1249
Pardo , M. T. and Guadalix, M. E. (1993) “Chemical Factors Affecting Selenite Sorption by Allophanic Soils,” Geoderma, 63, 43-52
Peri, J. B., and Hannan, R. B.(1960)”Surface Hydroxyl Groups onγ-Alumina,” J. Phys. Chem.,64,211-219.
Peri ,J. B. (1964) “Infrared and Gravimetric Study of the Surface Hydration of γ-Alumina,” J. Phys. Chem., 69, 211-219
Posselt, H. S., Anderson, F. J., and Weber, W. J. J.(1968)“Cation Sorption on Colloidal Hydrous Manganese Dioxide,” Environ. Sci. Technol., 2, 1087-1093.
Rincon, J. Ma., Romero, M. and Boccaccini, A. R. (1999)”Microstructural Characterization of a Glass and Glass-Ceramic Obtained from Municipal Incinerator Fly Ash,” J.Mater. Sci., 34, 4413-4423.
Schindler, P. W., (1981) ”Surface Complex at the Oxide-Water Interface,” in Adsorption of Inorganics at Solid/Liquid Interfaces, Anderson, N. and Rubin, A., Ed., Ann Arbor Science Publisher, Ann Arbor, Michigan.
Schindler, P. W., Furst, B., Dick, R., and Wolf, P. U. (1976) ”Ligand Properties of Surface Silanol Groups Ⅰ. Surface Complex Formation with Fe3+,Cu2+,Cd2+ and Pb2+,” J. Colloid Interface Sci.,55,469-475.
Schindler, P. W., and Stumm, W. (1987)“The Surface Chemistry of Oxides, Hydroxides and Oxide Minerals,” in Aquatic Surface Chemistry: Chemical Processes at Particle-Water Interface, Stumm, W. Ed., John Wiley, New York.
Schwertmann, U., and Taylor, R. M. (1989)“Iron Oxides,” in Minerals in Soil Environments, Dixon, J. B., Weed S. B. Ed., 2nd ed., Soil Sci. Soc. Am. Medison, Wisconsin, USA, 379-428.
Shuddhodan P. M., Vinod K. S. and Diwakar, T.(1995) “Radiotracer Technique in Adsorption Study: Part XIV. Efficient Removal of Mercury from Aqueous Solutions by Hydrous Zirconium Oxide,” Appt. Radiat. Isot., 47, 15-21
Sposito, G. (1983)”On the Surface Complexation Model of the Oxide-Aqueous Solution Interface,” J. Colloid Interface Sci., 91, 329-340.
Sposito, G. (1984)”The Future of an Illusion: Ion Activities in Soil Solutions,” Soil. Sci. Soc. Am J., 48, 531-536.
Sposito, G. (1989)”The Chemistry of Soils,” Oxford University Press Inc., New York
Stumm, W. (1992) Chemistry of the Solid-Water Interface, John Wiley, New York.
Stumm, W., Hohl, H. and Felix, D. (1976)“Interaction of Metal Ion with Hydrous Oxide Surfaces,” Croatica Chemica Acta, 48, 491-504.
Stumm, W., and Morgan, J. J. (1981) Aquatic Chemistry, John Wiley, New York.
Swallow, K. C., Hume, D. N., and Morel, F. M. M. (1980)“Sorption of Copper and Lead by Hydrous Ferric Oxide,” Environ. Sci. Technol., 14, 1326-1331.
Vieira, M., Catarino,T. L., Oliveira, M., Sousa, J., Torralba, J. M., Cambronero, L. E. G., Gonzalez-Mesones,F. L., and Victoria A. (1999) “Optimization of the Sintering Process of Raw Material Wastes,” Journal of Materials Processing Technology, 92-93, 97-101
Westall, J., and Hohl, H. (1980) ”A Comparison of Electrostatic Models for the Oxide/Solution Interface,” Adv. Colloid Interface Sci., 12, 265-294.
Westerhoff, G. P. and Daly, M. P. (1974) ”Water-Treatment-Plant Wastes Disposal-Part 1,” J. AWWA, 66, 319-324
Yates, D. E., Levine, S., and Healy, T. W. (1974)”Site-Binding Model of the Electrical Double Layer at the Oxide/Water Interface,” Chem. Soc. Faraday Trans. I, 70, 1807-1818.
中文文獻
史健軍,”淨水污泥脫水性質之研究,”台灣大學,環境工程學研究所,碩士論文(1977)
於幼華、張嵩林”淨水過程所產生廢物之處理研究,”台灣大學,環境工程學研究所,環境工程研究報告No.9(1978)
程道腴、鄭武輝,「工業陶瓷」,徐氏基金會(1990)
劉國雄,林數均,李勝隆,鄭晃忠,葉鈞蔚,『工程材料科學』,金華科技圖書股份有限公司(1991)
程道腴,鄭武輝,『工業陶瓷』,徐氏基金會出版(1992)
張坤森,”鉻、銅離子與g-氧化鋁固液界面間吸附反應之平衡及動力研究,”台灣大學,環境工程學研究所,碩士論文(1993)
黃忠良譯著,『工業陶瓷製程』,復漢出版社(1993)
羅時麒,”淨水場廢水排放對河川水質影響之模擬,”台灣大學,環境工程學研究所,碩士論文(1993)
伍祖聰,黃錦鐘,『粉末冶金』,高立圖書有限公司(1996)
廖錦聰,徐文慶,張蕙蘭,黃契儒,『焚化灰渣資源化報告』,工業技術研究院化學工業研究所(1996)
吳忠信,”二價陰離子在氧化鋁表面之吸附研究,”台灣大學,環境工程學研究所,博士論文(1999)
張廣智,「節水季刊」,第16期,經濟部水資源局(1999)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top