參考文獻
中文文獻
張坤森,鉻、銅離子與γ-氧化鋁固液界面間吸附反應之平衡及動力研究,國立台灣大學環境工程學研究所博士論文,1993。吳忠信,二價陰離子在氧化鋁表面之吸附研究,國立台灣大學環境工程學研究所博士論文,1999。官文惠,金屬陽離子於二氧化矽/水溶液固液反應之研究,國立台灣大學環境工程學研究所博士論文,2000。外文文獻
Anderson, P. A., and Benjamin, M. M. “Effects of silicon on the crystallization and adsorption properties of ferric oxides,” Environ. Sci. Technol., 19, 1048-1052 (1985).
Benjamin, M. M., and Leckie, J. O. “Adsorption of metals at oxide interface: effects of the concentration of adsorbate and competing metals,” in Contaminates and sediments, Baker, R. A., Ed., Ann. Arbor Sci., Ann Arbor, Michigan (1980).
Bowden, J. W., Nagarajah, S., Barrow, N. J., Posner, A. M., and Quirk, J. P. “Describing the adsorption of phosphate, citrate and selenate on a variable charge surface,” Aust. J. Soil Research, 18, 49-60 (1980).
Breeuwama, A., and Lyklema, J. “Physical and chemical adsorption of ions in the electrical double layer on Hematite (α-Fe2O3),” J. Colloid Interface Sci., 43, 437-448 (1973).
Chan, D., Perram, J. W., White, L. R., and Healy, T. W. “Regulation of surface potential at amphoteric surface during particle-particle interaction,” J. Chem. Soc. Fracday Trans., I, 71, 1046-1057 (1975).
Charlet, L., and Manceau, A., “X-ray absorption spectroscopic study of the sorption of Cr(III) at the oxide-water interface II. Adsorption, coprecipitation, and surface precipitation on hydrous ferric oxide,” J. Colloid Interface Sci., 168, 73-86 (1994).
Corey, R. B., in “Adsorption of inorganics at solid-liquid interface,” Ann. Arbor Sci. Pub., Ann Arbor, Michigan (1981).
Davis, J. A., James, R. O., and Leckie, J. O. “Surface ionization and complexation at the oxide/water interface I. Computation of electrical double layer properties in simple electrolytes,” J. Colloid Interface Sci., 63, 480-449 (1978).
Davis, J. A., and Leckie, J. O. “Surface ionization and complexation at the oxide/water interface II. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions,” J. Colloid Interface Sci., 67, 90-107 (1978).
Dzombak, D. A., and Morel, F. M. M. “Adsorption of inorganic pollutants in aquatic systems,” J. Hydraulic Eng., ASCE, 112, 588-598 (1986).
Dzombak, D. A., and Morel, F. M. M. Surface Complexation Modeling: Hydrous Ferric Oxide, John Wiley, NY (1990).
Farley, K. J., Dzombak, D. A., and Morel, F. M., “A surface precipitation model for the sorption of cations on metal oxides,” J. Colloid Interface Sci., 106, 226-242 (1985).
German R. M., in “Sintering theory and practice,” 12-13, John Wiley & Sons, NY, 1996.
Hayes, K. F., and Leckie, J. O. “Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interface,” J. Colloid Interface Sci., 115, 564-572 (1987).
Hayes, K. F., Papelis, C., and Leckie, J. O. “Modeling ionic strength effects on anion adsorption at hydrous oxide/solution interface,” J. Colloid Interface Sci., 125, 717-726 (1988).
Hayes, K. F., Redden, G., Ela, W., and Leckie, J. O. “Surface complexation models: an evaluation of model parameter estimation using FITEQL and oxide mineral titration data,” J. Colloid Interface Sci., 142, 448-469 (1991).
Healy, T. W., and White, L. R. “Ionizable surface group models of aqueous interface,” Adv. Colloid Interface Sci., 9, 303-345 (1978).
Hellferich, F. “Ion exchange,” McGraw-Hill, NY (1962).
Hohl, M., and Stumm, W. “Interaction of Pb2+ with hydrous γ-Al2O3,” J. Colloid Interface Sci., 43, 409-420 (1976).
James, R. O., and Healy, T. W. “Adsorption of hydrolyzable metal ion at the oxide-water interface,” J. Colloid Interface Sci., 40, 42-81 (1972).
James, R. O., and Parks, G. A. “Characterization of aqueous colloids by their electrical double layer and intrinsic surface chemical properties,” Surface Colloid Sci., 12, 119-126 (1982).
Joppien, G. R. “Characterization of adsorbed polymers at the charged silica-aqueous electrolyte interface,” J. Phys. Chem., 82, 20, 2210-2215 (1978).
Karthikeyan, K. G., Elliott, H. A., and Chorover J., “Role of surface precipitation in copper sorption by the hydrous oxides of iron and aluminum,” J. Colloid Interface Sci., 209, 72-78 (1999).
Katz, L. E., and Hayes, K. F., “Surface complexation modeling I. Strategy for modeling monomer complex formation at moderate surface coverage,” J. Colloid Interface Sci., 170, 477-490 (1995).
Katz, L. E., and Hayes, K. F., “Surface complexation modeling II. Strategy for modeling polymer and precipitation at high surface coverage,” J. Colloid Interface Sci., 170, 491-501 (1995).
Kingery W. D., Bowen H. K. and Uhlmann D.R., in “Introduction of ceramics,” 2nd ed., 474-475, John Wiley & Sons, NY, 1976.
Kipling, J. J., and Peakall, D. B. “Reversible and irreversible adsorption of vapours by solid oxides and hydrated oxides,” J. Chem. Soc., 157, 834-842 (1957).
Lewis, W. B., Alei, M. J., and Morgan, L. O. “Magnetic resonance studies on copper(II) complex ions in solution. I. Temperature Dependences of the 17O NMR and copper(II) EPR Linewidth of Cu(H2O)62+,” J. Chem. Phys., 44,2409-2417 (1966).
McBride, M. B. “Cu2+- adsorption characteristics of aluminum hydroxide and oxyhydroxides,” Clay and Clay Minerals, 30, 21-28 (1982).
Meng, X., and Letterman, R. D. “Effect of component oxide interaction on the adsorption properties of mixed oxides,” Environ. Sci. Technol., 27, 970-975 (1993a).
Meng, X., and Letterman, R. D. “Modeling ion adsorption on aluminum hydroxide modified silica,” Environ. Sci. Technol., 27, 1924-1929 (1993b).
Mesuere, K., and Fish, W. “Chromate and oxalate adsorption on goethite 2. Surface complexation modeling of competitive adsorption,” Environ. Sci. Technol., 26, 2365-2370 (1992).
Morel, F. M., Yeasted, J. G., and Westall, J. C. “Adsorption models: a mathematical analysis in the framework of general equilibrium calculations,” in Adsorption of Inorganics at Solid-Liquid Interface, Anderson, M. A., and Rubin, A. J., Eds., 263-294, Ann Arbor, Michigan (1981).
Morrill, L. G., Mahilum, B. C., and Mohiuddin, S. H. “Sorption, degradation and persistence,” in Organic Compounds in Soil, Ann Arbor Sci. Publishers, Ann Arbor, Michigan (1982).
Pepelis, C., Hayes, K. F., and Leckie, J. “Hydraql: A program for the complexation of chemical equilibrium composition of aqueous batch systems including surface-complexation modeling of ion adsorption at the oxide/solution interface,” Environ. Eng. Sci. Dep. Civil Eng. Stanford University, Technical Report NO. 306 (1988).
Peri, J. B., and Hannan, R. B. “Surface hydroxyl groups on γ-alumina,” J. Phys. Chem., 64, 1526-1530 (1960).
Posselt, H. S., Anderson, F. J., and Weber, W. J. J. “Cation sorption on colloidal hydrous manganese dioxide,” Environ. Sci. Technol., 2, 1087-1093 (1968).
Schinder, P. W., and Stumm, W. “The surface chemistry of oxides, hydroxides and oxide minerals,” in Aquatic Surface Chemistry: Chemical Process at Particle-Water Interface, Stumm, W. Ed., John Wiley, NY (1987).
Schwertmann, U., and Taylor R. M. “iron oxides,” in Minerals in Soil Environments, Dixon, J. B., Weed S. B., 2nd ed., Soil Sci. Soc. Am. J., Medison, Wisconsin, USA, 379-482 (1989).
Sposito, G. “On the surface complexation model of the oxide aqueous solution interface,” J. Colloid Interface Sci., 91, 329-340 (1983).
Sposito, G. “The future of an illusion: ion activities in soil solutions,” Soil Sci. Soc. Am. J., 48, 531-536 (1984).
Stumm, W., Hohl, H., and Felix, D. “Interaction of metal ions with hydrous oxide surface,” Croatica Chemica Acta, 48, 491-504 (1976).
Stumm, W., Huang, C. P., and Jenkins, S. R. “Specific chemical interaction affecting the stability of dispered system,” Croatica Chemica Acta, 42, 223-244 (1970).
Stumm, W., in “Chemistry of the solid-water interface,” p.20, John Wiley & Sons, Inc, 1992.
Swallow, K. C., Hume, D. N., and Morel, F. M. M. “Sorption of copper andlead by hydrous ferric oxides,” Environ. Sci. Technol., 14, 1326-1331 (1988).
Westall, J., and Hohl, H. “A comparison of electrostatic models for the oxide/solution interface,” Adv. Colloid Interface Sci., 12, 265-294 (1980).
Yates, D. E., Levine, S., and Healy, T. W. “Site-binding model of the electrical double layer at the oxide/water interface,” Chem. Soc. Farraday Trans. I, 70, 1807-1818 (1974).