跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/13 03:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪珮瑜
研究生(外文):Hung, Pei-Yu
論文名稱:淨水污泥及其燒結體對銅、鉛離子之吸附反應
指導教授:林正芳林正芳引用關係
指導教授(外文):Lin, Cheng-Fang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:112
中文關鍵詞:淨水污泥燒結吸附表面錯合模式TLM吸附邊緣曲線吸附親和力
外文關鍵詞:sludgesinteradsorptionsurface complex modelTLMpH-adsorption-edgesadsorption affinity
相關次數:
  • 被引用被引用:13
  • 點閱點閱:395
  • 評分評分:
  • 下載下載:74
  • 收藏至我的研究室書目清單書目收藏:1
淨水污泥中含有多種金屬氧化物資源與大量黏土物質,將其以燒結體之型態再利用,可避免其中有害物質因外在環境條件的改變而釋出,緩和淨水污泥最終處置的問題,並間接減少對自然資源的需求。金屬氧化物一般具有較大之比表面積,能與陰、陽離子進行吸附或錯合反應,影響其在環境中之傳輸與流佈。
本研究選擇以淨水污泥及其不同燒結條件下之燒結體為吸附劑,探討銅、鉛離子在其表面之吸附行為,並與γ-氧化鋁作一比較;
最後以修正之三層錯合模式﹝TLM﹞對實驗結果進行模擬,以了解淨水污泥燒結前後對重金屬離子之吸附差異。
由實驗結果得知,淨水污泥經燒結後,比表面積大幅減小;其對兩種陽離子之吸附邊緣曲線均向右偏移,意即在相同pH條件下,吸附率明顯下降;根據實驗結果計算其吸附容量得知,在pH=6.0±0.1的條件下,1000℃燒結體與1100℃燒結體對銅離子之吸附容量各約為3.30、1.75 mgCu/gSOH。且淨水污泥燒結前後,對銅、鉛離子的吸附親和力並不相同,未燒結之淨水污泥對銅離子有較強之親和力,然其燒結體則對鉛離子具較強之吸附親和力。
由模擬結果得知,鉛離子與銅離子在淨水污泥及其燒結體表面之吸附反應為內層吸附,添加背景電解質對吸附結果影響不大。兩種陽離子以自由離子態﹝Me2+﹞及水合態之一次水解產物﹝Me(OH)+﹞共同在吸附劑表面進行表面單鉤錯合反應之模擬結果最佳,吸附劑之表面位址密度假設為7 sites/nm2,此值介於二氧化矽﹝5 sites/nm2﹞與針鐵礦﹝16.8 sites/nm2﹞之間。
Sludges from water treatment works consist of Al hydroxide and clay materials due to the use of alum coagulants in treatment process and the presence of natural colloidal particles in source water. These water treatment sludges can be heated to generate useful materials. In the mean while, potential toxic constituents can be confined within the solid matrix so that toxic leaching is greatly reduced. Reuse of the water sludge will certainly save the land disposal demand. The heated sludge products are Al oxides in nature. They bear surface reacting sites that are able to adsorb environmental cations as well as anions.
In this study, water work sludges were sintered at various experimental conditions to produce Al-containing adsorbents. Adsorption of Cu2+ and Pb2+ on sintered oxide was investigated and sorption results were further modeled using TLM for sorption equilibrium constants.
Specific surface area of dried sludge has been greatly reduced to 2 - 5 m2/gm. In comparison to unsintered adsorbent, pH-adsorption-edges of both Cu2+ and Pb2+ were shifted toward basic pH condition, implying a reduction in the affinity of sintered adsorbent for metal ions. At sintering temperatures near 1000oC, the adsorption densities of adsorbents were around 1.75 - 3.30 mg Cu2+/gm at pH 6. Sintered adsorbent seems to exhibit better affinity for Pb2+ than Cu2+, which is quite different from the unsintered adsorbent which shows better association with Cu2+.
Effect of background electrolytes on metal sorption is negligible. Triple layer model simulation has shown that Cu2+ and Pb2+ sorption on sintered adsorbent are inner-sphere interactions and the dominated surface metal species are monodent of Me2+ and MeOH+.
目 錄
謝誌 ……………………………………………………………………………….. I
摘要 ………………………………………………………………………………. II
ABSTRACT ……………………………………………………………………… III
目錄 ………………………………………………………………………………...V
圖目錄 …………………………………………………………………………...VIII
表目錄 ……………………………………………………………………………..XI
第一章緒論 …………………………………………………………………….. 1
1-1研究緣起 …………………………………………………………………… 1
1-2研究目的與內容 …………………………………………………………… 2
第二章基本理論與文獻回顧 ………………………………………………….. 4
2-1金屬氧化物之物化特性 …………………………………………………... 4
2-1-1金屬氧化物之表面特性 …………………………………………… 4
2-1-2金屬氧化物表面位址密度與分佈 ………………………………… 6
2-1-3金屬氧化物與陽離子之表面錯合反應 …………………………… 7
2-2淨水污泥之氧化物組成及其性質 ………………………………………... 8
2-2-1二氧化矽 …………………………………………………………… 9
2-2-2氧化鋁 ………………………………………………………………10
2-2-3氧化鐵 ………………………………………………………………11
2-3燒結基本理論 …………………………………………………………….. 11
2-3-1固態燒結 ………………………………………………………….. 11
2-3-2燒結擴散機制 …………………………………………………….. 13
2-4吸附基本理論 ……………………………………………………………. 15
2-4-1物理吸附與化學吸附 …………………………………………….. 15
2-4-2特定吸附與非特定吸附 ………………………………………….. 16
2-4-3背景電解質對吸附反應之影響 ………………………………….. 17
2-5固液界面反應模式 ………………………………………………………...18
2-5-1等溫吸附模式 …………………………………………………….. 18
2-5-2離子交換模式 …………………………………………………….. 20
2-5-3表面錯合模式 …………………………………………………….. 21
2-6銅、鉛之物化特性 ………………………………………………………. 28
2-6-1銅 ………………………………………………………………….. 28
2-6-2鉛 ………………………………………………………………….. 29
第三章實驗材料與方法 ……………………………………………………… 31
3-1 吸附劑之製備 …………………………………………………………… 31
3-2 吸附劑之表面特性鑑定 ………………………………………………… 33
3-2-1 表面晶相結構之確認 ……………………………………………. 33
3-2-2 比表面積之測定 …………………………………………………. 34
3-2-3 表面酸鹼常數之測定 ……………………………………………. 35
3-3 平衡吸附實驗 …………………………………………………………… 37
3-4 競爭吸附實驗 …………………………………………………………… 39
3-5 吸附反應之表面錯合模式模擬 ………………………………………….. 39
第四章結果與討論 ……………………………………………………………42
4-1 吸附劑之表面特性鑑定結果 …………………………………………… 42
4-1-1 電子顯微鏡分析 …………………………………………………. 42
4-1-2 X光繞射分析 ……………………………………………………42
4-1-3 比表面積分析 ……………………………………………………..45
4-1-4 吸附劑表面酸解常數測定 ………………………………………. 47
4-2 24小時動力吸附實驗 ……………………………………………….…. 50
4-3 淨水污泥對銅、鉛離子之吸附反應 ………………………………….… 52
4-3-1銅離子之平衡吸附實驗及其模擬結果討論 ………………….…. 51
4-3-2鉛離子之平衡吸附實驗及其模擬結果討論 …………………….. 56
4-4淨水污泥燒結體對銅、鉛離子之吸附反應 ……………………………. 59
4-4-1銅離子之平衡吸附實驗及其模擬結果討論 ……………………. 59
4-4-2鉛離子之平衡吸附實驗及其模擬結果討論 ……………………. 62
4-5 銅、鉛離子在不同氧化物表面之界面反應 …………………………… 65
4-6 銅離子與鉛離子在不同氧化物表面之競爭吸附反應 ………………… 67
4-6-1 競爭力強弱之判斷 ………………………………………………. 67
4-6-2 競爭吸附結果之模擬 ……………………………………………. 70
4-7 模擬結果之討論 ………………………………………………………… 73
4-7-1 第一次模擬結果分析 ……………………………………………. 73
4-7-2 第二次模擬結果 …………………………………………………. 74
4-8 表面沉澱現象之討論 ……………………………………………………... 79
第五章結論與建議 ……………………………………………………………84
5-1結論 ………………………………………………………………………. 84
5-2建議 ………………………………………………………………………. 86
參考文獻 ………………………………………………………………………… 87
附錄 ……………………………………………………………………………… 93
參考文獻
中文文獻
張坤森,鉻、銅離子與γ-氧化鋁固液界面間吸附反應之平衡及動力研究,國立台灣大學環境工程學研究所博士論文,1993。
吳忠信,二價陰離子在氧化鋁表面之吸附研究,國立台灣大學環境工程學研究所博士論文,1999。
官文惠,金屬陽離子於二氧化矽/水溶液固液反應之研究,國立台灣大學環境工程學研究所博士論文,2000。
外文文獻
Anderson, P. A., and Benjamin, M. M. “Effects of silicon on the crystallization and adsorption properties of ferric oxides,” Environ. Sci. Technol., 19, 1048-1052 (1985).
Benjamin, M. M., and Leckie, J. O. “Adsorption of metals at oxide interface: effects of the concentration of adsorbate and competing metals,” in Contaminates and sediments, Baker, R. A., Ed., Ann. Arbor Sci., Ann Arbor, Michigan (1980).
Bowden, J. W., Nagarajah, S., Barrow, N. J., Posner, A. M., and Quirk, J. P. “Describing the adsorption of phosphate, citrate and selenate on a variable charge surface,” Aust. J. Soil Research, 18, 49-60 (1980).
Breeuwama, A., and Lyklema, J. “Physical and chemical adsorption of ions in the electrical double layer on Hematite (α-Fe2O3),” J. Colloid Interface Sci., 43, 437-448 (1973).
Chan, D., Perram, J. W., White, L. R., and Healy, T. W. “Regulation of surface potential at amphoteric surface during particle-particle interaction,” J. Chem. Soc. Fracday Trans., I, 71, 1046-1057 (1975).
Charlet, L., and Manceau, A., “X-ray absorption spectroscopic study of the sorption of Cr(III) at the oxide-water interface II. Adsorption, coprecipitation, and surface precipitation on hydrous ferric oxide,” J. Colloid Interface Sci., 168, 73-86 (1994).
Corey, R. B., in “Adsorption of inorganics at solid-liquid interface,” Ann. Arbor Sci. Pub., Ann Arbor, Michigan (1981).
Davis, J. A., James, R. O., and Leckie, J. O. “Surface ionization and complexation at the oxide/water interface I. Computation of electrical double layer properties in simple electrolytes,” J. Colloid Interface Sci., 63, 480-449 (1978).
Davis, J. A., and Leckie, J. O. “Surface ionization and complexation at the oxide/water interface II. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions,” J. Colloid Interface Sci., 67, 90-107 (1978).
Dzombak, D. A., and Morel, F. M. M. “Adsorption of inorganic pollutants in aquatic systems,” J. Hydraulic Eng., ASCE, 112, 588-598 (1986).
Dzombak, D. A., and Morel, F. M. M. Surface Complexation Modeling: Hydrous Ferric Oxide, John Wiley, NY (1990).
Farley, K. J., Dzombak, D. A., and Morel, F. M., “A surface precipitation model for the sorption of cations on metal oxides,” J. Colloid Interface Sci., 106, 226-242 (1985).
German R. M., in “Sintering theory and practice,” 12-13, John Wiley & Sons, NY, 1996.
Hayes, K. F., and Leckie, J. O. “Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interface,” J. Colloid Interface Sci., 115, 564-572 (1987).
Hayes, K. F., Papelis, C., and Leckie, J. O. “Modeling ionic strength effects on anion adsorption at hydrous oxide/solution interface,” J. Colloid Interface Sci., 125, 717-726 (1988).
Hayes, K. F., Redden, G., Ela, W., and Leckie, J. O. “Surface complexation models: an evaluation of model parameter estimation using FITEQL and oxide mineral titration data,” J. Colloid Interface Sci., 142, 448-469 (1991).
Healy, T. W., and White, L. R. “Ionizable surface group models of aqueous interface,” Adv. Colloid Interface Sci., 9, 303-345 (1978).
Hellferich, F. “Ion exchange,” McGraw-Hill, NY (1962).
Hohl, M., and Stumm, W. “Interaction of Pb2+ with hydrous γ-Al2O3,” J. Colloid Interface Sci., 43, 409-420 (1976).
James, R. O., and Healy, T. W. “Adsorption of hydrolyzable metal ion at the oxide-water interface,” J. Colloid Interface Sci., 40, 42-81 (1972).
James, R. O., and Parks, G. A. “Characterization of aqueous colloids by their electrical double layer and intrinsic surface chemical properties,” Surface Colloid Sci., 12, 119-126 (1982).
Joppien, G. R. “Characterization of adsorbed polymers at the charged silica-aqueous electrolyte interface,” J. Phys. Chem., 82, 20, 2210-2215 (1978).
Karthikeyan, K. G., Elliott, H. A., and Chorover J., “Role of surface precipitation in copper sorption by the hydrous oxides of iron and aluminum,” J. Colloid Interface Sci., 209, 72-78 (1999).
Katz, L. E., and Hayes, K. F., “Surface complexation modeling I. Strategy for modeling monomer complex formation at moderate surface coverage,” J. Colloid Interface Sci., 170, 477-490 (1995).
Katz, L. E., and Hayes, K. F., “Surface complexation modeling II. Strategy for modeling polymer and precipitation at high surface coverage,” J. Colloid Interface Sci., 170, 491-501 (1995).
Kingery W. D., Bowen H. K. and Uhlmann D.R., in “Introduction of ceramics,” 2nd ed., 474-475, John Wiley & Sons, NY, 1976.
Kipling, J. J., and Peakall, D. B. “Reversible and irreversible adsorption of vapours by solid oxides and hydrated oxides,” J. Chem. Soc., 157, 834-842 (1957).
Lewis, W. B., Alei, M. J., and Morgan, L. O. “Magnetic resonance studies on copper(II) complex ions in solution. I. Temperature Dependences of the 17O NMR and copper(II) EPR Linewidth of Cu(H2O)62+,” J. Chem. Phys., 44,2409-2417 (1966).
McBride, M. B. “Cu2+- adsorption characteristics of aluminum hydroxide and oxyhydroxides,” Clay and Clay Minerals, 30, 21-28 (1982).
Meng, X., and Letterman, R. D. “Effect of component oxide interaction on the adsorption properties of mixed oxides,” Environ. Sci. Technol., 27, 970-975 (1993a).
Meng, X., and Letterman, R. D. “Modeling ion adsorption on aluminum hydroxide modified silica,” Environ. Sci. Technol., 27, 1924-1929 (1993b).
Mesuere, K., and Fish, W. “Chromate and oxalate adsorption on goethite 2. Surface complexation modeling of competitive adsorption,” Environ. Sci. Technol., 26, 2365-2370 (1992).
Morel, F. M., Yeasted, J. G., and Westall, J. C. “Adsorption models: a mathematical analysis in the framework of general equilibrium calculations,” in Adsorption of Inorganics at Solid-Liquid Interface, Anderson, M. A., and Rubin, A. J., Eds., 263-294, Ann Arbor, Michigan (1981).
Morrill, L. G., Mahilum, B. C., and Mohiuddin, S. H. “Sorption, degradation and persistence,” in Organic Compounds in Soil, Ann Arbor Sci. Publishers, Ann Arbor, Michigan (1982).
Pepelis, C., Hayes, K. F., and Leckie, J. “Hydraql: A program for the complexation of chemical equilibrium composition of aqueous batch systems including surface-complexation modeling of ion adsorption at the oxide/solution interface,” Environ. Eng. Sci. Dep. Civil Eng. Stanford University, Technical Report NO. 306 (1988).
Peri, J. B., and Hannan, R. B. “Surface hydroxyl groups on γ-alumina,” J. Phys. Chem., 64, 1526-1530 (1960).
Posselt, H. S., Anderson, F. J., and Weber, W. J. J. “Cation sorption on colloidal hydrous manganese dioxide,” Environ. Sci. Technol., 2, 1087-1093 (1968).
Schinder, P. W., and Stumm, W. “The surface chemistry of oxides, hydroxides and oxide minerals,” in Aquatic Surface Chemistry: Chemical Process at Particle-Water Interface, Stumm, W. Ed., John Wiley, NY (1987).
Schwertmann, U., and Taylor R. M. “iron oxides,” in Minerals in Soil Environments, Dixon, J. B., Weed S. B., 2nd ed., Soil Sci. Soc. Am. J., Medison, Wisconsin, USA, 379-482 (1989).
Sposito, G. “On the surface complexation model of the oxide aqueous solution interface,” J. Colloid Interface Sci., 91, 329-340 (1983).
Sposito, G. “The future of an illusion: ion activities in soil solutions,” Soil Sci. Soc. Am. J., 48, 531-536 (1984).
Stumm, W., Hohl, H., and Felix, D. “Interaction of metal ions with hydrous oxide surface,” Croatica Chemica Acta, 48, 491-504 (1976).
Stumm, W., Huang, C. P., and Jenkins, S. R. “Specific chemical interaction affecting the stability of dispered system,” Croatica Chemica Acta, 42, 223-244 (1970).
Stumm, W., in “Chemistry of the solid-water interface,” p.20, John Wiley & Sons, Inc, 1992.
Swallow, K. C., Hume, D. N., and Morel, F. M. M. “Sorption of copper andlead by hydrous ferric oxides,” Environ. Sci. Technol., 14, 1326-1331 (1988).
Westall, J., and Hohl, H. “A comparison of electrostatic models for the oxide/solution interface,” Adv. Colloid Interface Sci., 12, 265-294 (1980).
Yates, D. E., Levine, S., and Healy, T. W. “Site-binding model of the electrical double layer at the oxide/water interface,” Chem. Soc. Farraday Trans. I, 70, 1807-1818 (1974).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊