跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/25 04:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:石秉鑫
研究生(外文):PING-HSIN SHIH
論文名稱:以固定之好氧脫硝菌應用於同槽硝化脫硝反應之可行性研究
指導教授:曾四恭曾四恭引用關係
指導教授(外文):S. K. Tseng
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:176
中文關鍵詞:好氧脫硝固定化同時硝化脫硝豬糞尿硝化脫硝
外文關鍵詞:aerobic denitrificationimmobilizationsimultaneous nitrification-denitrification (SND)swine wastewaternitrificationdenitrification
相關次數:
  • 被引用被引用:17
  • 點閱點閱:920
  • 評分評分:
  • 下載下載:178
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的為瞭解由本實驗室所分離出之好氧脫硝菌Pseudomonas stutzeri 經包埋後,分別於硝化菌、異營菌存在情況下,進行好氧生長及脫硝特性試驗,以釐清好氧脫硝菌在硝化菌及異營菌之競爭下是否會對脫硝反應造成影響。除此之外,亦利用固定化技術促進脫硝菌在好氧環境下之脫硝效率,並藉以連續流試驗探討經包埋之好氧脫硝菌及硝化菌進行同時硝化脫硝反應之可行性。
對於經包埋之好氧脫硝菌與懸浮硝化菌共存之反應槽內,確定其可以同時進行硝化脫硝反應,而硝化菌的添加會使硝化反應的進行增快,以致環境中的硝酸鹽濃度提高,進而加速脫硝反應,且不會對脫硝反應造成抑制。硝化菌添加量的提高,可提高總氮去除量及TOC的降解速率。同時,提高硝酸鹽濃度有助於氨氮的去除,並可促進『共呼吸作用』而使脫硝速率提升,間接提高總氮去除率。
異營菌的添加,會使氨氮的降解速率提高。但由於異營菌會和好氧脫硝菌競爭碳源,造成總氮降解速率的降低,不利於脫硝反應。
本實驗利用連續流之操作方式,並將好氧脫硝菌固定化包埋,探討固定化菌株於不同醋酸鈉、硝酸鹽氮下生長與除氮之情形。結果發現脫硝反應中,最佳C/N比值為8.04。同時,試驗中TOC的去除率均可達90%以上,可有效降解碳源。隨著碳源負荷的提高,硝酸鹽氮及總氮的去除量均可提高。
實驗中並利用連續流之操作方式,分別將好氧脫硝菌及硝化菌進行固定包埋,並藉以探討固定化細胞於不同醋酸鈉、氨態氮負荷及水力停留下之生長與除氮情形,及同時進行硝化及好氧脫硝反應之可行性。發現提高TOC負荷可增加氨氮的利用量,而生長所去除之氨氮量亦會增加。提高氨氮負荷則可促進硝化反應,產生較多之NOx,故總氮去除有提高的趨勢。但在整體系統中,總氮的去除仍受限於硝化反應速率。水力停留時間對於TOC的利用並無顯著影響,在3.33小時內,系統均可有效降解TOC達97.33%以上。而水力停留時間增長,可促進硝化量及硝化速率,但對於脫硝量卻無顯著增加,主因乃為脫硝所需碳源不足,總氮去除無增加之現象。基於考量固定化顆粒之攪拌作用及氮去除功能,建議反應槽適當之填充率以10%為宜。
於豬糞尿原水試驗中對養豬廢水處理之初步評估結果,利用固定之硝化菌及好氧脫硝菌應可以應用於養豬廢水氮之去除,廢水中COD亦可用來作為脫硝碳源,因此可達到同時去除COD及氮的目標,具有實場應用潛力。
This study is to investigate the denitrification efficiency of Pseudomonas stutzeri . Pseudomonas stutzeri is the bacterium which has denitrifying potential under aerobic conditions and is previously separated by our reach group. For the verification of the denitrifying ability under competition with nitrifying sludge or heterotrophs , the effect of competition on growth and denitrification of the bacteria was extensively studied. Furthermore , we used immobilized cells to enhance the efficiency of denitrification under aerobic condition and discussed the possibility of simultaneous nitrification and denitrification by immobilized cells with nitrifying sludge in continuous flow reactor.
According to the experimental results , we found that simultaneous nitrification and denitrification occurred in a reactor which has immobilized cells and nitrifying sludge. This improves nitrification , promotes the concentration of nitrite and nitrate , and accelerates denitrification rate .The more nitrifying sludges you added , the more Total-Nitrogen (T-N) and Total Organic Carbon (TOC) you can remove. In addition , simultaneous nitrification and denitrification reduced the amounts of ammonia but increased the co-respiration of oxygen and nitrogen oxides . Therefore , the denitrification rate and nitrogen removing rate increased efficiency .
However , heterotrophs competed with immobilized cells for carbon source and decreased the Total-N convert rate.
In order to know exactly the situation on growth and on denitrification of immobilized cells , the effects of different acetate and nitrate concentrations were operated by continuous flow reactor. It was found that the best Carbon/Nitrogen (C/N) ratio was 8.04 and TOC utilized percentage was all above 90%. The convert of nitrate and Total-N was increased by the carbon source loading.
In addition , it was conducted to investigate the growth and denitrification of Pseudomonas stutzeri cultivated aerobically under different acetate and nitrate loading as well as various hydraulic retention times. It was found that a relative increase in the concentration of acetate to nitrate would contribute to growth and ammonia convert. Increasing ammonia loading can prompt nitrification and produce more Nitrogen Oxides (NOx) to enhance the Total-N convert rate. Total-N convert was still limited by nitrification in the whole system. Different hydraulic retention times showed no significant effect on TOC utilization;and the TOC reduction efficiency of the system was 97.33% in 3.33 hours. It could improve nitrification and nitrifying rate by having a longer hydraulic retention time , but it could not increase denitrification , which was limited by carbon sources. For considering mixing and denitrification efficiencies of the immobilized cells , the proper filling rate was about 10%.
第 1 章 前言1
1-1 研究緣起1
1-2 研究目的及內容3
第 2 章 文獻回顧4
2-1 自然界中之氮循環4
2-2 氮及其化合物對環境的影響4
2-3 硝化反應8
2-4 脫硝反應10
2-4-1 硝酸鹽的還原反應10
2-4-2 脫硝作用11
2-4-3 脫硝原理15
2-5 脫硝反應之電子傳遞鏈16
2-6 脫硝作用之影響因子21
2-6-1 溶氧21
2-6-2 氧化還原電位24
2-6-3 酸鹼度(pH)及溫度27
2-6-4 電子供給者28
2-6-5 硝酸鹽及中間產物28
2-7 好氧脫硝29
2-8 微生物固定化技術及應用34
2-9 同時硝化脫硝反應槽40
第 3 章 材料與方法44
3-1 研究內容44
3-2 菌種來源及菌種之活化與增殖45
3-2-1 菌種來源45
3-2-2 好氧脫硝菌Pseudomonas stutzeri45
3-2-3 硝化污泥48
3-2-4 活性污泥48
3-3 批次試驗49
3-3-1 好氧環境下固定化之好氧脫硝菌與硝化菌之競爭反應49
3-3-2 好氧環境下固定化之好氧脫硝菌與異營菌之競爭反應50
3-4 好氧環境下固定化之好氧脫硝菌與異營菌之競爭反應52
3-5 好氧環境下固定化細胞之脫硝效率52
3-6 探討固定化之好氧脫硝菌與硝化菌在好氧環境下之同時硝化脫硝反應55
3-6-1 同時含氨氮及硝酸鹽之基質對硝化脫硝之影響55
3-6-2 僅含氨氮之基質對硝化脫硝之影響57
3-7 固定化細胞填充率對硝化脫硝反應之影響58
3-8 固定化之好氧脫硝菌對養豬廢水中氮之去除試驗58
3-9 掃描式電子顯微鏡照相59
3-10 實驗設備及分析方法59
3-10-1 實驗設備59
3-10-2分析方法60
第 4 章 結果與討論62
4-1 好氧震盪培養環境下固定之好氧脫硝菌與硝化菌之競爭試驗62
4-1-1 不同硝化菌添加量下生長、硝化及脫硝反應之探討62
4-1-1-1 好氧脫硝菌在不同硝化菌添加量下生長與基質利用情形之比較63
4-1-1-2 好氧脫硝菌在不同硝化菌添加量下脫硝效率及共呼吸現象之比較63
4-1-2 不同碳源濃度下硝化菌與好氧脫硝菌之硝化與脫硝反應之探討68
4-1-3 不同硝酸鹽濃度下硝化菌與好氧脫硝菌之硝化與脫硝反應之探討70
4-1-4 不同氨氮濃度下硝化菌與好氧脫硝菌之硝化與脫硝反應之探討72
4-1-5 小結74
4-2 好氧環境下固定化之好氧脫硝菌與異營菌之競爭反應75
4-3 連續流操作環境下之除氮能力試驗78
4-3-1 氮源為NO3-N廢水之好氧脫硝試驗79
4-3-1-2 不同醋酸鈉濃度對於同時硝化脫硝及除氮效率之影響79
4-4 氮源為氨氮廢水之硝化及好氧脫硝試驗85
4-4-1 不同醋酸鈉濃度對於硝化、脫硝及除氮效率之影響85
4-4-2 不同氨氮濃度對於硝化、脫硝及除氮效率之影響97
4-4-3 不同水力停留時間對於硝化、脫硝及除氮效率之影響108
4-5 同時硝化脫硝特性試驗結果117
4-5-1 不同醋酸鈉濃度對於同時硝化脫硝及除氮效率之影響117
4-5-2 不同氨氮濃度對於同時硝化脫硝及除氮效率之影響127
4-5-3 不同硝酸鹽濃度對於同時硝化脫硝及除氮效率之影響137
4-6 不同填充率試驗149
4-7 豬糞尿廢水試驗153
4-8 電子顯微鏡照相結果157
4-8-1 電子顯微鏡照相157
第 5 章 結論與建議163
5-1 結論163
5-2 建議166
參考文獻167
1.Robertson, L. A., and Kuenen, J. G., 1984. “Aerobic denitrification: A controversy revived.” Arch. Microbiol., 139: 351-354.
2.U.S. Environmental Protection Agency. 1993. Manual of Nitrogen Control. U.S. Environmental Protection Agency, Washington, D. C.
3.Altas, R. M., 1988. Microbiology — Fundamentals and Applications, 2nd, Macmillan.
4.Metcalf & Eddy. 1991. Wastewater Engineering-treatment : disposal and reuse, 3nd, New YorK, McGraw-HILL.
5.Shuval, H. I. and Gruener, N., 1997. “Infant methemoglobinemia and other health effects of nitrate in drinker water”. Prog. Wat. Tech. 8:183-193.
6.聯合國環境規畫署、世界衛生組織合編,1987。硝酸鹽、亞硝酸鹽和N─亞硝基化合物,中國環境科學出版社。
7.沈元中。1994。「不同處理方式影響高濃度硝酸鹽廢水生物脫硝效果之研究」。國立中興大學環境工程學研究所碩士論文,台中。
8.李澤民。1994。環境保護法規─公害防治部份。大學圖書供應社,台中。
9.Cole, J.A. and Ferguson, S. J., 1987, “Assimilatory and dissimilatory reduction of nitrate to ammonia in the nitrogen and sulphur cycles.” Cambridge University Press., 281-330.
10.Stouthamer, A. H., 1988. “Dissimilatory reduction of oxidized nitrogen compounds”. In Environmental Microbiology of Anaerobes. John Wiley and Sons. In press.
11.Payne, W. J., 1981. Denitrification. John Wiley and Sons.
12.Sias, S. R., Stouthamer, A. H. and Ingraham, J. L., 1980. “The assimilatory and dissimilatory nitrate reductase of Pseudomonas aeruginosa are encoded by different genes.” J. Gen. Microbiol. 118:229-234.
13.Thurston, C. F., 1972. “Disappearing enzyme, Process Biochem.” August, 18-20.
14.Brooks, M. H., Smith, R. L. and Macalady, D. L., 1992. “Inhibition of existing denitrification enzyme activity by chloramphenicol.” Appl. Environ. Microbiol., 58(5): 1746-1753.
15.Stouthamer, A. H., 1976. “Biochemistry and genetics of nitrate reductase in bacteria.” Adv. Microbial. Physiol., 14:315-375.
16.Hochstein, L. I. and Tomlinson, G. A., 1988. “The enzymes associated with denitrification.” Annu. Rev. Microbial, 42:231-261.
17.Schulp, J. A. and Stouthamer, A. H., 1970. “The influence of oxygen, glucose, and nitrate upon the formation of nitrate reductase and respiratory system in Bacillus licheniformis.” J. Gen. Microbiol., 64:195-203.
18.Payne, W. J., Riley, P. S., and Cox, C. D. Jr., 1971. “Separate nitrite, nitric oxide, and nitrous oxide reducing fractions from Pseudomonas perfectomarinus.” J. Bacteriol, 106: 356-361.
19.Singleton, P. and Sainsbury, D., 1988. Dictionary of Microbiology and Molecular Biology, 2nd, John Wiley and Sons.
20.Koike, I. and Hattori, A., 1975. “Growth yield of a denitrification bacterium, Pseudomonas denitrificans, under aerobic and denitrifying conditions.” J. Gen. Microbiol., 88:1-10.
21.Finlay, B. J., Span, A. S. W. and Harman, J. M. P., 1983. “Nitrate respiration in primitive eukaryotes.” Nature, 303:333-335.
22.Mateju, V., Cizinska, S., Krejci, J. and Janoch, T., 1992. “Biological water denitrification—A review.” Enzyme Microbial. Technol., 14:170-183.
23.Knowles, R., 1982. “Denitrification.” Microbiol. Rev., 46(1):43-70.
24.Tiedje, J. M., 1982. “Denitrification: Ecological niches, competition and survival.” Ant. Van Leeuwenhoek, 48:569-583.
25.Gramble, T. N., Betlach, M. R., and Tiedje, J. M., 1977. “Numerically dominant denitrifying bacteria from world soils.” Appl. Environ. Microbiol., 33:926-939.
26.McCarty, P. L., Beck, and Amant, P., 1969. “Biological denitrification of wastewater by addition of organic materials.” Proc. of 24th Ind. Waste Conf., Perdue Univ., 1271-1285.
27.Lloyd, D., 1993. “Aerobic denitrification in soils and sediments: from fallacies to facts.” Trends Ecol. Evol., 8(10).
28.Iwasaki, H. and Matsubara, T., 1972. “A nitrite reductase from Achromo-bacter cycloclastes.” J. Biochem. 78: 355-361.
29.Iwasaki, H., Noji, S. and Shidara, S., 1975. “Achromobacter cycloclastes nitrite reductase. The function of copper, amino acid composition and ESR spectra.” J. Biochem. 78: 355-361.
30.Iwasaki, H., Shidara, S., Suzuki, H. and Mori, T., 1963. “Studies on denitrification. VIII . Further purification and properties of denitrifying enzyme.” J. Biochem. 53: 299-303.
31.Reuner, E. D. and Becker, G. E., 1970. “Production of nitric oxide and nitrous oxide during denitrification by Corynebacterium nephridii.” J. Bacteriol. 101: 821-826.
32.Sawada, E., Satoh, T. and Kitamura, H., 1978. “Purification and properties of a dissimilatory nitrite reductase of a denitrifying phototrophic bacterium.” Plant Cell Physiol. 19: 1339-1351.
33.Stouthamer, A. H., 1980. “Bioenergetic studies on Paracoccus denitrificans.” Trends Biochem. Sci. 5: 164-166.
34.Tiedje, J. M., 1988. “Ecology of denitrification and dissimilatory nitrate reduction to ammonium.” Biology of anaerobic microorganisms. 33:179-244.
35.蔡宜宸。1995。「好氧情況下脫氮作用之研究」。國立中興大學環境工程學研究所碩士論文,台中。
36.Bonin, P. and Gilewicz, M., 1991. “A direct demonstration of co-respiration of oxygen and nitrogen oxides by Pseudomonas nautica: some spectral and kinetic properties of the respiratory components.” FEMS Microbiol. Letters. 80: 183-188.
37.Jannasch, H. W., 1960. “Denitrification as influenced by photosynthetic oxygen production.” J. Gen. Microbiol., 98: 231-238.
38.Hernandez, D., and Rowe, J. J., 1987. “Oxygen regulation in denitrifying Pseudomonas aeruginosa.” Appl. Environ. Microbiol. 53(4): 745-750.
39.Hernandez, D. and Rowe, J. J., 1988. “Oxygen inhibition of nitrate uptake is a general regulatory mechanism in nitrate respiration.” J. Biological chemistry, 263(17): 7937-7939.
40.Noji, S. and Taniguchi, S., 1987. “Molecular oxygen controls nitrate transport of Escherichia coli nitrate-respiring cells.” J. Biol. Chem., 262: 9441-9443.
41.Payne, W. J., 1973. “Reduction of nitrogenous oxides by micro-organisms.” Bacteriol. Rev. 37:409-452.
42.Kapralek, F., Jechova, E., and Otavova, M., 1982. “Two sites of oxygen control in induced synthesis of respiratory nitrate reductase in Escherichia coli.” J. Bacteriol., 149:1142-1145.
43.Nelson, L. M., and Knowles, R., 1978. “Effect of oxygen and nitrate on nitrogen fixation and denitrification by Azospirillum brasilense grown in continuous culture.” Can. J. Microbiol., 24: 300-305.
44.Sacks, L. E. and Baker, H. A., 1949. “The influence of oxygen on nitrate and nitrite reduction.” J. Bacteriol., 58: 11-22.
45.Meiklejohn, J., 1940. “Aerobic denitrification.” Ann. Appl. Biol., 558-573.
46.Alefounder, P. R. and Ferguson, S. J., 1981. “The location of dissimilatory nitrite reductase and the control of dissimilatory nitrate reductase by oxygen in Paracoccus denitrificans.” Biochem. J., 192: 231-240.
47.Alefounder, P. R., Greenfield, A. J., McCarthy, J. E. G. and Ferguson, S. J., 1984. “The basis for preferential electron flow to oxygen rather than nitrogen oxides in the denitrifying bacterium Paracoccus denitrificans.” In Microbial Gas Metabolism-Mechanistic, metabolic and biotechnological aspects., Academic Press., 225-230.
48.Alefounder, P. R., Greenfield, A. J., McCarthy, J. E. G., and Ferguson, S. J., 1983. “ Selection and organisation of denitrifying electron transfer pathways in Paracoccus denitrificans.” Biochem. Biophy. Acta., 724: 20-39.
49.Boogerd, F. C., 1984. “Energetic aspects of denitrification in Paracoccus denitrificans.” PhD thesis. Free University of Amsterdam, the Netherlands.
50.Kucera, I. and Dadak, V., 1983. “The effect uncoupler on the distribution of the electron flow between the terminal acceptors oxygen and nitrite in the cells of Paracoccus denitrificans.” Biochem. Biophys. Res. Comm. 117: 252-258.
51.Kucera, I., Bourblikova, P. and Dadak, V., 1984. “Function of terminal acceptors in the biosynthesis of denitrification pathway components in Paracoccus denitrificans.” Folia Microbiol. 29: 108-114.
52.Lie, E., and Welander, T., 1994. “Influence of dissolved oxygen and oxidation-reduction potential on the denitrification rate of activated sludge.” Water Quality International '94-Conference Preprint Book 1, 73-82.
53.董瑞安、吳先琪。1992。「微量含氯有機物在地下水中生物轉換及傳輸模式之研究」。國立台灣大學環境工程學研究所博士論文。
54.蘇昭郎、歐陽嶠暉。氮磷生物處理技術之回顧與前瞻。國立中央大學環境工程學刊。
55.Charpentier, J., Florentz, M. and David, G., 1987. “Oxidation-reduction potential(ORP) regulation: a way to optimize pollution removal and energy saving in the low load activated sludge process.” Wat. Sci. Tech., 19: 645-655.
56.Wareham, D. G., Hall, K. J. and Mavinic, D. S., 1993. “Real-time control of aerobic-anoxic sludge digestion using ORP.” J. Environ. Engineer., 119(1): 120-136.
57.Koch, F. A. and Oldham, W. K., 1985. “Oxidation-reduction potential-a tool for monitoring, control and optimization of biological nutrient removal systems.” Wat. Sci. Tech., 17: 259-281.
58.Sapshead, L. M. and Wimpenny, J. W. T.,1972. “The influence of oxygen and nitrate on the formation of the cytochrome pigments of the aerobic and anaerobic respiratory chain of Micrococcus denitrificans.” Biochem. Biophys. Acta. 267: 388-397.
59.Hochstein, L. I., Betlach, M. R. and Kritikos, G., 1984. “The effect of oxygen on denitrification during steady-state growth of Paracoccus halodenitrificans.” Arch. Microbiol., 137: 74-78.
60.Kurt, M., Dunn, I. J. and Bourne, J. R., 1987. “Biological denitrification of drinking water using autotrophic organisms with H2 in a fluidized-bed biofilm reactor.” Biotech. Bioeng., 29: March, 493-501.
61.Christensen, S. and Tiedje, J. m., 1988. “Oxygen control prevents denitrifiers and barley roots from directly competing for nitrate.” FEMS Microbiol. Ecol. 53:217-221.
62.Bryan, B. A., 1981. Physiology and biochemistry of denitrification. In Denitrification, Nitrification and Atmospheric Nitrous Oxide. C. C. Delwiche (editor). John Wiley and Sons, 67-84.
63.Lloyd, B., 1936. “A marine denitrifying organism.” J. Bact., 21: 89-96.
64.Kuenen, J. G. and Robertson, L. A., 1987. “Ecology of nitrification and denitrification. In the nitrogen and sulphur cycles.” Cole, J. A. and Ferguson, S. (editors). Cambridge University Press. 162-218.
65.Skerman, V. B. D., Lack, J. and Millis, N., 1951. “Influence of oxygen concentration on the reduction of nitrate by a Pseudomonas sp.” In the growing culture. Aust. J. Sci. Res., 4: 511-525.
66.Robertson, L. A. and Kuenen, J. G., 1983. “Thiosphaera pantotropha gen. nov. sp. nov. A facultatively anaerobic, facultatively autotrophic sulphur bacterium.” J. Gen. Microbiol. 29:2847-2855.
67.Patureau, D., Davison, J., Bernet, N. and Moletta, R., 1994. “Denitrification under various aeration conditions in Comamonas sp., strain SGLY2.” FEMS Microbiol. Ecol. 14: 71-78.
68.Marshall, R. O., Dishburger, H. J., MacVicar, R. and Hallmark, G. D., 1953. “Studies no the effect of aeration on nitrate reduction by Pseudomonas species using N15.” J. Bacteriol. 66: 254-258.
69.Meiberg, J. B. M., Bruinenberg, P. M. and Harder, W., 1980. “Effect of dissolved oxygen tension on the metabolism of methylated amines in Hyphomicrobium X in the absence and presence of nitrate: evidence for ‘aerobic’ denitrification.” J. Gen. Microbiol., 120: 453-463.
70.Simpkin, T. J. and Boyle, W. C., 1988. “The lack of repression by oxygen of the denitrifying enzymes in activated sludge.” Wat. Res., 22(2).
71.Kurl, J. M. and Veeningen, R., 1977. “The synthesis of the dissimilatory nitrate reductase under aerobic conditions in a number of denitrifying bacteria, isolated from activated sludge and drinking water.” Wat. Res., 11: 39-43.
72.Kennedy, J. F., Melo E. H., and Jumel, K., 1990. “Immobilized enzyme and cells.” Chemical Engineering Process, July, 81-89.
73.Bickerstaff, G. F., 1997, Method in Biotechnology, Vol. 1:Immobilized enzyme and cells. Humana Press Inc., Totowa, NJ, USA.
74.陳國誠。1992。微生物酵素工程學。藝軒圖書出版社。
75.Lewandowski, Z., Bakke, R. and Characklis, W. G., 1987. “ Nitrification and autotrophic denitrification in calcium alginate beads.” Water Sci. tech., 19: 175-182.
76.Lu, C. J., Lee, C. M. and Huang, C. Z., 1996. “Biodegradation of chlorophenols by immobilized pure-culture microorganisms.” Wat. Sci. Tech., 34(10): 67-72.
77.Chen, W. C. and Cheng, S. S., 1996. “Characterization of immobilized cells in biodegradation of ABS resin manufacturing.” Wat. Sci. Tech., 34(10): 51-58.
78.Travieso, L., Benitez, F., Weiland, P., Sanchez, E., Dupeyron, R. and Dominguez, 1996. “Experiments on immobilization of microalage for nutrient removal in wastewater treatment.” Bioresource Technology, 64(7): 884-889.
79.Sadhukhan, R., Roy, S. K. and Chakrabarty, S. L., 1993. “Immobilization of α-amylase from Myceliophthora thermophila D-14(ATCC 48104).” Enzyme Microbiol. Tech., 15: 801-810.
80.Seip, J. E. and Cosimo, R. D., 1992. “Optimization of accessible catalase activity in polyacrylamide gel-immobilized Saccharomyces cerevisiae.” Biotech. Bioeng., 40(5): 638-642.
81.Cottenceau, G., Dheromez, M., Lubochinsky, B. and Letellier, F., 1990. “Immobilization and treatment of Streptococcus faecalis for the continuous conversion of arginine into citrulline.” Enzyme Microbiol. Tech., 12: 355-360.
82.White, G. F. and Thomas, R. T., 1990. “Immobilization of the surfactant-degrading bacterium Pseudomonas C12B in polyacrylamide gel beads: Effect of immobilization on the primary and ultimate biodegradation of SDS, and redistribution of bacteria within beads during use.” Enzyme Microbiol. Tech., 12: 697-705.
83.Tsubone, T., Ogaki, Y., Yoshiy, Y. and Takahashi, M., 1996. “Effects of biomass entrapment and carrier properties on the performance of an air-fluidized-bed biofilm reactor.” Wat. Environ. Res., 64(7): 884-889.
84.Hanaki, K., Hirunmasuwan, S. and Matsuo, T., 1994. “Protection of methanogenic bacteria from low pH and toxic materials by immobilization using polyvinyl alcohol.” Wat. Res., 28(4): 877-885.
85.Wu, K. A. and Wisecarver, K. D., 1990. “Biological phenol degradation in a countercurrent three-phase fluidized bed using a novel cell immobilization technique.” AICHE Symposium Series San Francisco, CA, USA, 86(276): 113-118.
86.Wu, K. A. and Wisecarver, K. D., 1992. “Cell immobilization using PVA crosslinked with boric acid.” Biotech. Bioeng., 39(4): 447-449.
87.Asano, H., Myoga, H., Asano, M. and Toyao, M., 1992. “A study of nitrification utilizing whole microorganisms immobilized by the PVA-freezing method.” Wat. Sci. Tech. 26(5-6): 1037-1046.
88.Chen, K. C., Chen, S. J. and Houng, J. Y., 1996. “Improvement of gas permeability of denitrifying PVA gel beads.” Enzyme Microbiol. Tech. 18: 502-506.
89.Chen, K. C. and Lin, Y. F., 1994. “Immobilization of microorganisms with phosphorylated polyvinyl alcohol (PVA) gel.” Enzyme Microbiol. Tech.16: 79-83.
90.Lin, Y. F. and Chen, K. C., 1993. “Denitrification by immobilized sludge with polyvinyl alcohol gels.” Wat. Sci. Tech. 28(7): 159-164.
91.Canizares, R. O., Rivas, L., Montes, C., Dominguez, A. R., Travieso, L. and Benitez, F., 1994. “Aerated swine-wastewater treatment with K-carrageenan immobilized Spirulina maxima.” Biores. Tech., 47: 89-91.
92.Tanaka, K., Tada, M., Kimata, T., Harada, S., Fujii, Y., Mizuguchi, T., Mori, N. and Emori, H., 1991. “Development of new nitrogen removal system using nitrifying bacteria immobilized in synthetic resin pellets.” Wat. Sci. Tech. 23: 681-690.
93.謝淵琳。2000。『利用中空矽膠管薄膜生物反應槽進行廢水除氮之研究』。國立台灣大學環境工程研究所碩士論文,台北。
94.Bang, D.Y., Watanabe, Y. and Noike, T., 1995. ”An experimental study on aerobic denitrification with polyvinyl alcohol as carbon source in biofilm.” Wat.Sci. Tech., 32 (8):235-242.
95.Rollgalla, F. and Bourbigot, M. M., 1990. ”New development in complete nitrogen remova; with biological aerated filters.” Wat. Sci. Tech., 22 (1-2):273-280.
96.Chui, P.C., Terashims, Y. and Tay, J, H., 1999. “Nitrogen removal in a submerged filter with no effluent recirculation.” 1999 IAWQ Conference.
97.Nishimura, F., 1999. “Treatment characters of a reactor with both sludge separation filter and airlift pump nitrogen removal.” 1999 IAQW Conference.
98.Moriyama, K., Sato, K. and Harade, Y., 1990. “Renovation of an extended aeration plant for simultaneous biological removal of nitrogen and phosphorous using oxic-anaerobic process.” Wat. Sci. Tech., 22 (7-8):61-68.
99.黃顯凱。2000。『環境中好氧脫硝菌之篩選及其對廢水中硝酸鹽去除之研究』。國立台灣大學環境工程研究所博士論文,台北。
100.史慧萍。2000。『好氧脫硝菌之篩選及其特性研究』。國立台灣大學環境工程研究所碩士論文,台北。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top