跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/08 21:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王文熙
研究生(外文):Wang Wen-Hsi
論文名稱:以過渡金屬添加及加碼射線之介穩水泥作為牙科逆向封填材料的研究
論文名稱(外文):Transition Metal-Contained and Gamma-ray Exposed PSC as a Dental Retrograde-filling Material
指導教授:林峰輝林峰輝引用關係林俊彬林俊彬引用關係
指導教授(外文):Lin Feng-HuiLin Chun-Pin
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:61
中文關鍵詞:水合反應過渡金屬加碼射線鈣矽酸鹽牙科逆向封填材料
外文關鍵詞:hydration reactiontransition metalgamma raycalcium silicatedental retrograde-filling material
相關次數:
  • 被引用被引用:3
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
PSC為目前我們最新發展的一種牙科逆向封填材料,其絕佳的封填性、生物相容性、由於其會隨著固結而上昇的pH值所產生抗菌性及對於牙周韌帶的貼附有引導的作用等,是其作為牙科逆向封填材料的主要優勢所在,但是其固結時間太長及不良的操作性質則是目前這種材料的最大缺點。因此我們試著藉由改變製程持溫的溫度、添加過渡金屬元素及照射γ-ray等條件,使得PSC中的最主要的成份C3S的結構及含量產生改變,並觀察其對固結時間的影響。
而從實驗的結果中可以得到,在1400℃的持溫溫度下,其微硬度的表現都比持溫溫度是1300℃的各組來得好,而由XRD的比較後可得知產物中的C3S的量都有隨著溫度的上昇而增加驅勢。 但是γ-ray的照射對材料的水合反應沒有影響。當CoO的增加量在到達5%時,不但對於有最高的C3S/CaO的比,也較能穩定活性較高的單斜結構組成的C3S,除此之外,對於後期的水合產物portlandite的形成也有極大的幫助,並且在微硬度的表現可達到將近70HV,相對於對照組而言相差了14倍之多。

We are developing a brand new dental retrograde filling material, which is called partial-stabilized cement (PSC). It is superb because of it great sealing ability, biocompatibility, anti-bacterial by increasing pH value, and induction of periodontal ligament (PDL) attachment. But it is limited in this field because of its long setting time and poor handling property. So what we are doing here is trying to change the composition and structure of the major component (C3S) of PSC by changing preparation temperature, transition metal addition and γ-ray exposure and evaluate the effect by microhardness test.
In the research, we find out that the reaction of hydration is much better as the preparing temperature increasing. It is known that composition of C3S in the product also increases with the raising temperature after the comparison of XRD. The exposure of the γ-ray to the anhydrous materials make no difference to the reaction of hydration. When the addition of CoO is up to the 5%, the product only has a higher ratio of C3S and CaO but also stabilizes the more active monoclinic structure of C3S. Besides, it facilitates the formation of later hydration product, portlandite, too. Its microhardness value almost reaches 70 HV, which is 14 times to the control group.

中文摘要-------------------------------------------------------I
英文摘要------------------------------------------------------II
目-----------------------------------------------------------III
圖目錄---------------------------------------------------------V
表目錄-------------------------------------------------------VII
第一章 緒論----------------------------------------------------1
1-1 前言-------------------------------------------------------1
1-2 材料種類和性質---------------------------------------------2
1-2-1 銀粉-----------------------------------------------------2
1-2-2 馬來膠---------------------------------------------------3
1-2-3強化氧化鋅丁香油酚黏合劑(Reinforced ZOE cement)---------3
1-2-4 複合樹脂-------------------------------------------------4
1-2-5 玻璃離子體-----------------------------------------------4
1-2-6 MTA------------------------------------------------------5
1-3 研究目的及動機---------------------------------------------5
第二章 理論基礎------------------------------------------------7
2-1 牙齒基本構造-----------------------------------------------7
2-2 PSC的性質-------------------------------------------------10
2-3 過渡金屬元素添加對於PSC的影響-----------------------------14
2-4 放射線照射對陶瓷材料的影響--------------------------------15
第三章 實驗材枓與方法-----------------------------------------18
3-1 實驗儀器--------------------------------------------------18
3-2 實驗藥品--------------------------------------------------19
3-3 實驗方法及流程--------------------------------------------20
3-3-1 PSC之製備-----------------------------------------------20
3-3-2持溫溫度對C3S製程產物的影響------------------------------21
3-3-3持溫時間對C3S製程產物的影響------------------------------23
3-3-4添加過渡金屬元素、溫度、及γ-ray照射對C3S製程產物的影響--25
3-3-5 添加過渡金屬元素、持溫溫度及γ-ray照射對PSC硬度的影響---27
第四章 結果與討論---------------------------------------------29
4-1 PSC的製備-------------------------------------------------29
4-2持溫溫度對C3S結構的影響------------------------------------32
4-3持溫時間對C3S製程產物的影響--------------------------------33
4-3-1 CoO的添加-----------------------------------------------33
4-3-2 ZnO的添加-----------------------------------------------35
4-3-3 Cr2O3的添加---------------------------------------------37
4-3-4 各個添加物之間對於C3S成份影響的比較---------------------39
4-4 微硬度測試------------------------------------------------44
4-4-1 持溫溫度對於PSC微硬度的影響-----------------------------44
4-4-2 γ-ray的照射對PSC微硬度的影響---------------------------44
4-4-3 過渡金屬元素的添加對PSC微硬度的影響---------------------44
4-5 過渡金屬元素對於PSC結構及水合反應影響的討論---------------50
4-6 電子顯微結構的觀察----------------------------------------51
第五章 結論---------------------------------------------------56
第六章 未來研究-----------------------------------------------57
參考文獻------------------------------------------------------58

1.Y.T. Jou, C. Pertl “Is there a best retrograde filling material ?” Dent Clin North Am, 41: 555-561, 1997.
2.S. Friedman, “Retrograde approaches in endodontic therapy.” Endod Dent Traumatol, 7:97-107, 1991.
3.B.R. Johnson “Considerations in the selection of a root-end filling material.” Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 87:398-404, 1999.
4.M. Torabinejad, N. Chivian “Clinical applications of mineral trioxide aggregate.” J Endodon, 25:197-205, 1999.
5.M. Torabinejad, et al. “Physical and chemical properties of new root-end filling material.” J Endodon, 25:349-353, 1995.
6.M. Torabinejad, et al. “Sealing ability of a mineral trioxide aggregate when used as a root end filling material.” J Endodon, 19:591-595, 1993.
7.D.E. Arens, W.R. Adams, R.A. DeCastro, “Endodontic surgery.” Philadelphia : Harper & Row, p154-168, 1981.
8.L.W. Nelson, D.B. Mahler, “Factors influencing the sealing behavior of retrograde amalgam fillings.” Oral Surg Oral Med Oral Pathol, 69:356-360, 1990.
9.A.H. Gartner, S.O. Dorn, “Advances in endodontic surgery.”, Dent Clin North Am, 36:357-378, 1992.
10.R.K. Subay, A. Subay, “In vitro sealing ability of dentin bonding agents and cavity varnish with amalgam as retrofills.”, J Endodon, 25:157-160, 1999.
11.N.J. McDonald, T.C. Dumsha. “An evaluation of the retrograde apical seal using dentine bonding materials.” Int Endod J, 23:156-162, 1990.
12.W.R. Liggett, J.M. Brady, et al. “Light microscopy, scanning electron microscopy, and microprobe analysis of bone response to zinc and nonzinc amalgam implants.” Oral Surg. 49:254-262, 1980.
13.M. Torabinejad, et al. “Investigation of mineral trioxide aggregate for root-end filling in dogs.” J Endodon, 21:603-608, 1995.
14.M. Torabinejad, et al. “Tissue reaction to implanted Super-EBA and mineral trioxide aggregate in the mandible of guinea pigs : a preliminary report.” J Endodon, 21:569-571, 1995.
15.M. Torabinejad, et al. “Tissue reaction to implanted root-end filling materials in the tibia and mandible of guinea pigs.” J Endodon, 24:468-471, 1998.
16.M.G. MacPherson, G.R. Hartwell, et al. “Leakage in vitro with high-temperature thermoplasticized gutta-percha, high copper amalgam, and warm gutta-percha when used as retrofilling materials.” J Endodon, 15:212-215, 1989,
17.C. Escobar, et al. “A comparative study between injectable low-temperature (70oC) gutta-percha and silver amalgam as a retroseal.” Oral Surg, 61:504-507, 1986.
18.C.S. Shaw, E.A. BeGole, et al. “The apical sealing efficacy of two reverse filling techniques versus cold-burnished gutta-percha.” J Endodon, 15:350-354, 1989.
19.J. Oynick, T. Oynick, “A study of a new material for retrograde fillings.” J Endodon, 4:203-206, 1978.
20.W.G. Crooks, R.W. Anderson, et al. “Longitudinal evaluation of the seal of IRM root end fillings.” J Endodon, 20:250-252, 1994.
21.E.L. Fitzpatrick, H.R. Striman. “Scanning electron microscopic evaluation of finishing techniques on IRM and EBA retrofillings.” J Endodon, 23:423-427, 1997.
22.彭清炯、鄭莉珮合譯, 林崧池修, “ORBAN氏口腔胚胎學及組織學”, 合記圖書出版社發行, 第八版.
23.G. C. Bye, “Portland Cement: Composition, Production and Properties”, 1983.
24.A. Beiser, “Concept of Modern Physics”, McGraw-Hill, Inc., Fifth Edition, 1995.
25.S. J. Zinkle, C. Kinoshita, “Defect Production in Ceramics”, J. Nuclear Materials, 215, 200-217, 1997
26.W. Bolse, “Formation and Development of Disorder networks in Si-based Ceramics Under Ion Bombardment”, Nuclear Instruments and Methods in Physical Research, B 141, 133-139, 1998.
27.O.E. Omotoso, D.G. Ivey, R. Mikula, “Containment mechanism of trivalent chromium in tricalcium silicate” Journal of Hazardous Materials, 1-28, 60(1998).
28.M. Murat, F. Sorrentino, “EFFECT OF LARGE ADDITIONS OF Cd, Pb, Cr, Zn, TO CEMENT RAW MEAL ON THE COMPOSITION AND THE PROPERTIES OF THE CLINKER AND THE CEMENT” Cement and Concrete Research, Vol.26, pp.377-385, 1996
29.E. M. Gartner, “A PROPOSED MECHANISM FOR THE GROWTH OF C-S-H DURING THE HYDRATION OF TRICALCIUM SILICATE”, Cement and Concrete Research, Vol.27, pp.665-672, 1997
30.E. M. Gartner, K.E. Kurtis, P.J.M. Monteiro, “Proposed mechanisms of C-S-H growth tested by soft X-ray microscopy”, Cement and Concrete Research, Vol.30, pp.817-822, 2000
31.H. M. Jennings, “A model for the microstructure of calcium silicate hydrate in cement pate”, Cement and Concrete Research, Vol.30, pp.101-116, 2000
32.X. Cong, R. J. Kirkpatrick, “29Si MAS NMR Study of the Structure of Calcium Silicate Hydrate”, Advn. Cem. Bas. Mat. Vol3. pp. 144-156, 1996
33.N. K. Katyal, S. C. Ahluwalia, R. Parkash, “SOLID SOLUTION AND HYDRATION BEHAVIOUR OF MAGNESIUM-BEARING TRICALCIUM SILICATE PHASE”, Cement and Concrete Research, vol.28, no.6, pp.867-875, 1998

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top