跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/08 01:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:紀長文
研究生(外文):Chang-wen Chi
論文名稱:利用人工鼻感測器鑑定養豬場臭味之研究
論文名稱(外文):Development of Artifical nose for the detection of swine facility odors
指導教授:費昌勇費昌勇引用關係
指導教授(外文):Andrew C. Y. Fei
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:獸醫學研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:92
中文關鍵詞:人工鼻壓電晶體臭味
外文關鍵詞:Artifical nosePiezoelectric crystalOdors
相關次數:
  • 被引用被引用:1
  • 點閱點閱:410
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係利用較為客觀且模仿人類嗅覺原理而由國人自行研發的人工鼻檢測儀器﹙Artifical nose﹚來評估應用於豬場相關臭味氣體快速檢測方法建立之可行性,藉以減少因污染氣味認知上的差異所衍生居民抗爭而造成社會成本耗損及強化養豬戶環保概念,以作好環境保護及改善污染,進而提升競爭力。此研究係將六種不同成分具有專ㄧ特性之生物(DH31)或化學物質(TN、HAC01、A1N、A5N、P1)被覆於各壓電石英晶體上(Piezoelectric crystal quartz)而製成可同時檢測有機胺(Amines)、有機酸(Organic acid)、阿摩尼亞(Ammonia)、硫醇類(Mercaptan)及苯環類(Aromatic)等物質之多列陣式壓電晶體人工鼻。其檢測原理即以豬場中較常產生臭味之各類物質特定受體蛋白吸附於各壓電晶體上,當檢測氣體與特定受體蛋白壓電晶體產生吸附作用時,其所產生之頻率變化藉電腦程式來格式化以產生精確如指紋般的特定圖譜(Fingerprint),以鑑定該氣味之屬性。因此本研究之焦點乃著重於評估使用多列陣式壓電晶體人工鼻當作豬場臭味分析感測器之潛能、實際應用於標準品、相關試驗室和國內豬舍有害氣體及氣味產生的種類及濃度檢測之結果及未來技術之探討。
本試驗自89年9月至90年5月間分別進行儀器再現性和穩定性之確認、台灣北部及中南部等八縣市127場豬場及8個相關試驗室的實際採樣檢測研究,並將127場豬場檢測結果與環保聞臭師(A panel of people)對127場豬場之直接嗅覺檢測結果作比對。
試驗結果發現此儀器具有好的穩定性及再現性,最適宜之採樣時間為350秒,標準品檢測之範圍Ammonia、Indole、Hexanoic acid 和 Toluene 則在 0.001 ppm 到 100 ppm之間,糞臭素之檢測範圍則從 0.01 ppm 到 100 ppm之間。在受測之127場豬場中,台北縣及基隆市分析結果則以CH 1、CH 2、CH 3、CH 4、CH 6等受體探針所產生之頻率變化較為劇烈、桃竹苗等縣之檢測分析值則以CH 3、CH 4受體探針所產生之頻率變化較為顯著、而雲嘉南等區域之檢測結果以CH 1、CH 3、CH 4等受體探針所產生之頻率變化較為劇烈。若以人嗅覺檢測(Olfactometry)結果來與上述頻率震盪劇烈之豬場做比對則發現其臭味多列屬於第三級和第四級之臭味檢測標準,比對各探針之被覆物質後得知127個受測之養豬場臭味主要係來自於有機胺、有機酸及硫醇類等降解物質所造成,但北部與南部因飼養環境、方法及溫溼度等條件之差異,常會影響其他較低濃度臭味氣體之檢出結果,故建議宜繼續採用此一操作簡易,價格便宜,又可現場快速鑑定之本法作一較長期的量測研究,收集相關影響環境變異係數及與養豬場臭氣產生之關聯性,藉以訂定客觀之國家檢測標準。
In the recent years, people pay more attention to the environment impact of swine facility due to the high education level and environment protection knowledge. According to US Environmental Protection Agency report that the high concentration of noxious gases ( such as Hydrogen sulfide, Carbon dioxide, Ammonia etc.) in the swine facility would cause person to breathe irritatively breathing. The noxious gases is also reported as one of the factors that caused to the death of hogs. More and more statistic data shows that the odors nuisance has become the major environmental problems in Taiwan. In order to solve the argument, an artifical nose study was conducted to detect and estimate the noxious gases in the swine facility. In this study a sensor system was employed to detect different gaseous odorants. The system consists of an array of six sensors in which different biological materials ( DH31, TN, HAC01, A1N, A5N, P1) were coated onto the surface of piezoelectric electrode. The principle theory of this study is when the specific gas is sorbed onto the coated material, the increased mass will reduce the resonant frequency of the crystal. By monitoring the change in the resonant frequency, the specific gas can, thus, be quantified. 135 samples were tested from 127 swine facilities and 8 laboratories in 8 counties from September, 2000 to May, 2001. there is good validation data of sensors sensitivity and reproducibility test. the detection range of Ammonia, Indole , Hexanoic acid and Toluene range from 0.001 to 100 ppm, and 0.01 to 100 ppm for Skatole. The response time is about 350 seconds. The test results indicate that the sensor of CH1,CH3 and CH4 receptor have significant changes of the resonant frequency in 127 swine facilities. Those changes are classified to be the degree 3 and degree 4 of odors level, compared by the method of human olfactory detection system (Olfactometry), We checked coated marterial of those sensor receptors and find out that the swine facility odors consist of Amines, Mercaptans and Organic acid. The array of six sensors form an unique fingerprint for each compound which could be used to identify different odorants.
We believed that using artifical nose to monitor the odour problems in swine facility, will become handly method in the near future. Although, sensor lifetime, desorption and biological molecules analogues problems need to be improved. Many applications should be easily accessible with the piezoelectric biosensor since it offers relatively low cost, real-time output, and experimental simplicity. As piezoelectric detection systems are optimized to their potential uses in livestock industry.
第一章緒言----------------------------------------1
第二章文獻探討------------------------------------4
第一節生物感測器之簡介--------------------------4
第二節生物感測器測量之原理----------------------12
第三節各種生物成分被覆物質固定方法之探討--------17
第四節豬場臭氣之來源與各類檢測方法之比較--------25
第五節生物感測器的應用和未來發展之潛能----------32
第三章材料與方法----------------------------------34
第一節試藥與檢測儀器 ---------------------------34
第二節生物成分被覆物質之固定方法----------------35
第三節檢測儀器再現性,敏感性及檢測極限之確認方法-36
第四節採樣方法與地點分布------------------------37
第五節應用環保臭味師之方式對豬場臭味之評估------38
第六節人工鼻之標準操作程序----------------------39
第四章結果與討論----------------------------------43
第一節儀器及檢測方法之確認 ---------------------43
第二節應用環保臭味師之方式對豬場臭味之評估------47
第三節應用相關臭味標準品對人工鼻檢測濃度之探討--47
第四節野外豬場現場實際檢測之結果----------------48
結論--------------------------------------------52
參考文獻------------------------------------------87
1.周華萍。生物感測器市場近況。生物產業6(1):47-52, 1995
2.吳宗正。嗅覺生物感測器的開發與未來展望。專題報導8-23,1996
3.蘇忠禎、劉惠群、吳繼芳。豬舍主要臭氣成分之生物處理研究。
中華農學會報新184:67-79, 1998。
4.羅中恆、劉惠群、吳繼芳、郭偉明。豬場空氣中臭味污染物質的特性研
究。中華農學會報新172:139-151, 1995。
5.賴昭伶。綠黴素單源抗體之產製及其應用於壓電免疫感測器之開發研究
。國立台灣大學農業化學研究所碩士論文。1997。
6.林正方、郝晶瑾。應用電子感測技術於臭味物質之研究。國家科學委員
會計畫。NSC87-EPA-P-002-020, 1998。
7.蔡志賢。茶菁萎凋及攪拌過程對細胞形態結構與臭菁味及乙烯生成變化
之影響。農林廳農業科技研究計畫。1998。
8.蔡志賢、吳宗正。生物電子鼻在茶業上的應用。科學農業49(5,6):
111-116, 2001。
9.行政院環境保護署。臭氣及異味官能測定法。環署檢字第07395號公告
NIEA A201.10A, 1988。
10.吳宗正。生物感測器.
http://140.112.94.11/~dsfon/lifescience/biosensor.
11.Attili BS, Suleiman AA. A piezoelectric immunosensor for the
detection of cortisol. Analytical Letter. 28(12):
2149-2159,1995.
12.Aloha DR. Working with toxic and odor thresholds. http://response.restoration.noaa.gov/cameo/dr_aloha/odor. 6: 1-5,2001.
13.Bernard A, Lauwerys R. Present status and trends in
biological monitoring of exposure to industrial chemicals.
Journal of occupational medicine. 28(8): 558-563,1986.
14.Brecht A, Piehler J, Lang G, Gauglitz G. A direct optical
immunosensor for atrazine detection. Analytica Chimica Acta
311 : 289-299, 1995.
15.Bier FF, Jockers R, Schmid RD. Integrated optical
immunosensor for s-Triazine determination: Regeneration,
Calibration and Limitations. Analyst. 119: 437-441, 1994.
16.Chen K, Le D, Zhang H, Nie L, Yao S. Model of quartz crystal
microbe growth sensor and its application to estimation of
microbial population in mineral water. Analytica Chimica
Acta 329: 83-89, 1996.
17.Chu X, Lin ZH, Shen GL, Yu RQ. Piezoelectric immunosensor
for the detection of immunoglobulin M. Analyst 120 : 2829-
2832, 1995.
18.Claudia OH, Miller PS, Lewis A J. The effects of reducuing
dietary crude protein concentration on odor in swine
facilities. 1997 Swine report summaries index: 1-6,1997.
19.Davis KA. Continuous liquid-phase piezoelectric biosensor
for kinetic immunoassays. Analytica Chemistry. 61: 1227-
1230, 1989.
20.Dickinson TA, White J, Kauer JS. Walt, D. R. Current trends
in artificial-nose technology. Tibtech 16 : 250-258, 1998.
21.Dickinson TA, White J, Kauer JS, Walt DR. A chemical-
detecting system based on a cross-reactive optical sensor
array. Nature. 382(22): 697-700, 1996.
22.Ebato H, Gentry CA, Herron JN, Muller W, Okahata Y,
Ringsdorf H, Suci PA. Investigation of specific binding of
antifluorescyl antibody and Fab to fluorescein lipids in
langmuir-blodgett deposited films using quartz crystal
microbalance methodology. Analytica Chem 66: 1683-1689, 1994.
23.Eggins B. Biosensors: an introduction. Wiley Tenbner. 1-33,
1996.
24.Erika KR, Phil D. Handbook of biosensors and electronic
noses medicine, food, and the environment. CRC Press Inc.,1-
35,1997.
25.Fernandez-Sanchez A, Gonzalez-Garcia MB, Costa-Garcia A, AC
voltammetric carbon paste-based enzyme immunosensors.
Biosensor and Bioelectronics. 14: 917-924, 2000.
26.Fulhage CD. Gases and Odors from swine wastes.
http://muextension.missouri.edu/xplor/agguides/agengin/
g01880.htm
27.Ghourchian HO, Kamo N. New detection cell for piezoelectric
quartz crystals: frequency changes strictly follow
bruckenstein and shays equation in very dilute non-
electrolyte aqueous solutions. Analyst. 120: 2737-2740, 1995.
28.Guilbault, GG, Jordan JM. Analytical uses of piezoelectric
crystals: A review. Analytica Chem 19(1): 1-28, 1988.
29.Guilbault GG. Immobilization methods for piezoelectric
biosensors. Biotechnology. 7: 349-352, 1989.
30.Guilbault GG, Luong J H. Gas phase biosensors. Journal of
biotechnology 9 : 1-10, 1988.
31.Guilbault GG, Hock B, Schmid R. A piezoelectric
immunobiosensor for atrazine in drinking water. Biosensor
and Bioelectronics. 7: 411-419,1992.
32.Hardesty D. The importance of urine odor control in the
caviary.2000 http://acba.osb-land.com/articles/odorctrl,htm
33.Hermanson GT, Mallia AK, Smith PK. Immobilized affinity
ligand techniques. Academic Press,INC.1992
34.Hudon G, Guy C, Hermia J. Measurement of odor intensity by
an electronic nose. Journal of Air Waste Management
Association. 50 (10): 1750-1758, 2000.
35.Iowa State University. Enivironmental issues in livestock
production home study course: Odor assessment and control.
Livestock industry facilities and environment. 2:1-14, 2000.
36.Kanazawa KK, Gordon II JG. Frequency of a quartz
microbalance in contact with liquid. Analytica Chemistry.
57: 1770-1771, 1985.
37.Kim JH, Cho JH, Cha GS, Lee CW, Kim HB, Paek SH.
Conductimetric membrane strip immunosensor with polyaniline-
bound gold colloid as signal generator. Biosensor and
Bioelectronics. 14: 907-915, 2000.
38.Koblinger C, Drost S, Aberl F, Wolf H, Koch S, Woias P. A
quartz crystal biosensor for measurement in liquids.
Biosensors and bioelectronics. 7 : 397-404, 1992.
39.Konig B, Gratzel M. Long-term stability and improved
reusability of a piezoelectric immunosensor for human
erythrocytes. Analytica Chimica Acta. 280: 37-41, 1993.
40.Konig B, Gratzel M. Development of a piezoelectric
immunosensor for human erythrocytes. Analytica Chimica Acta.
276: 37-41, 1993.
41.Konig B, Gratzel M. A novel immunosensor for Herpes viruses.
Analytical Chem. 66: 341-344, 1994.
42.Kurosawa S, Tawara E, Kamo N, Kobatake Y. Oscillating
frequency of piezoelectric quartz crystal in solution.
Analytica Chimica Acta 230 : 41-49, 1990.
43.Lancet D. The strong scent of success, Olfaction: molecules
to network. Nature. 351(23): 275-276, 1991.
44.Liu J, Bjornsson L, Mattiasson BO. Immobilised activated
sludge based biosensor for biochemical oxygen demand
measurement.Biosensor and Bioelectronics. 14: 883-893, 2000.
45.Luong JHT, Guilbault GG. Analytical applications of
piezoelectric crystal biosensors. Biosensors principles and
applications : 107-137, 1991.
46.Lundstrom I. Artificial noses: Picture the smell. Nature. 406
(17): 682-684, 2000.
47.Masson M, Yun K, Haruyama T, Kobatake E, Aizawa M. Quartz
crystal microbalance bioaffinity sensor for biotin.
Analytical Chem. 67: 2212-2215, 1995.
48.Menini A, Picco C, Firestein S, Quantal-like current
fluctuations induced by odorants in olfactory receptor
cells. Nature. 373(2): 435-437, 1995.
49.Muramatsu H, Dick JM, Karube I, Tamiya E. Piezoelectric
crystal biosensor modified with protein A for determination
of immunoglobulins. Analytica Chem. 59: 2760-2764, 1987.
50.Nakanishi K, Karube I, Hiroshi S, Uchida A, Ishida Y.
Detection of red tide-causing plankton chattonella marina
using a piezoelectric immunosensor. Analytica Chimica Acta.
325: 73-80,1996.
51.Nomura T, Watanabe M. Behaviour of piezoelectric quartz
crystals in solutions with application to the determination
of iodide. Analytica Chimica Acta 175 : 107-116, 1985.
52.Piehler J, Brecht A, Geckeler KE, Gauglitz G. Surface
modification for direct immunoprobes. Biosensors and
Bioelectronics. 11(6/7): 579-590, 1996.
53.Pohan C, Armstrong M. An introduction to biosensors.1-
6,1995. http://eng.rpi.edu/dept/chem-eng/biotech-
environ/biosen2/biosensor
54.Rakow N, Suslick KS. A colorimetric sensor array for odour
visualization. Nature. 406(17): 710-713, 2000.
55.Roederer JE, Bastiaans G. Microgravimetric immunoassay with
piezoelectric crystals. Analytica Chem. 55: 2333-2336, 1983.
56.Scouten WH, Luong JHT, Brown RS. Enzyme or protein
immobilization techniques for applications in biosensor
design. Tibtech. 13: 178-185,1995.
57.Skladal P, Minunni M, Mascini M, Kolar V, Franek M.
Characterization of monoclonal antibodies to 2,4-
dichlorophenoxyacetic acid using a piezoelectric quartz
crystal microbalance in solution. Journal of immunological
methods. 176: 329-33, 1993.
58.Steegborn C, Skladalt P. Construction and characterization
of the direct piezoelectric immunosensor for atrazine
operating in solution. Biosensor and Bioelectronics. 12(1):
19-27, 1997.
59.Su X, Ng HT, Dai CC, O,Shea SJ, Li SF. Disposable, low cost,
silver-coated, piezoelectric quartz crtstal biosensor and
electrode protection. Analyst 125( 12): 2268-2273, 2000.
60.Suleiman AA, Guilbault GG. Piezoelectric (pz) immunosensors
and applications. Analytical Letters. 24(8): 1283-1292, 1991.
61.Thevenot DR, Toth K, Durst RA, Wilson GS. Electrochemical
biosensors: recommended definitions and classification.
Biosensor and Bioelectronics. 16(1-2): 121-131, 2001.
62.Thompson M, Arthur CL, Dhaliwal GK. Liquid-phase
piezoelectric and acoustic transmission studies of
interfacial immunochemistry. Analytica Chem 58 : 1206-1209,
1986.
63.Trechock M, Kendall S. How states fail to prevent pollution
from livestock waste. NRDC.2000. http://www.
nrdc.org/water/pollution/factor/stnod.asp.
64.Turner APF. Biosensors: past, present and future. Essays in
biotechnology. 1-7, 1996.
65.Wang X, Stroot PG, Zhang Y, Riskowski GL. Odor carrying
characteristics of dust from swine facilities. An ASAE
meeting presentation UILU-ENG-98-7019: 1-12, 1998.
66.Ward MD, Buttry DA. In situ interfacial mass detection with
piezoelectric transducers. Science. 249(31): 1000-1007, 1990.
67.Walt DR, Dickinson T, White J, Kauer J, Johnson S,
Engelhardt H, Sutter J, Jurs P. Optical sensor arrays for
odor recognition. Biosensor and Bioelectronics. 13 (6): 697-
699, 1998.
68.Wu TZ. A piezoelectric biosensor as an olfactory receptor
for odour detection: electronic nose. Biosensor and
Bioelectronics. 14 (1): 9-18, 1999.
69.Xavier MP, Vallejo B, Marazuela MD, Moreno-Bondi MC, Baldini
F, Falai A. Fiber optic monitoring of carbamate pesticides
using porous glass with covalently bound chlorophenol red.
Biosensor and Bioelectronics. 14: 895-905, 2000.
70.Yokoyama K, Ikebukuro K, Tamiya E, Karube I, Ichiki N,
Arikawa Y. Highly sensitive quartz crystal immunosensors for
multisample detection of herbicides. Analytica Chimica Acta
304 : 139-145, 1995.
71.Zhou XC, Zhong L, Li S F Y, Ng SC, Chan HSO. Organic vapour
sensors based on quartz crystal microbalance coated with
self-assembled monolayers. Sensors and actuators B 42 : 59-
65, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top