跳到主要內容

臺灣博碩士論文加值系統

(44.210.77.73) 您好!臺灣時間:2024/02/28 03:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝嘉芳
研究生(外文):HSIEH, CHIA-FANG
論文名稱:麩胺酸對大鼠視叉上核神經元的電生理研究
論文名稱(外文):The Effects of Glutamate on the Electrophysiological Activities of the Rat Suprachiasmatic Nucleus Neurons
指導教授:郭鐘金郭鐘金引用關係
指導教授(外文):KUO, CHUNG-CHIN
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生理學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2000
畢業學年度:89
語文別:中文
論文頁數:50
中文關鍵詞:麩胺酸視叉上核電生理
外文關鍵詞:glutamateSCNelectrophysiology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:315
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在哺乳動物,下視丘的視叉上核(suprachiasmatic nucleus, SCN)是控制日週期(circadian rhythm)的主要樞紐。在in vitro腦切片的狀況下,視叉上核神經元的自發性動作電位也有24小時的週期性變化。麩胺酸(glutamate)是視叉上核主要的興奮性神經傳導物質,可以調控光線對生物時鐘的重設(entrainment),而且會相移視叉上核的神經活性週期。為了了解麩胺酸對於視叉上核神經元電生理的影響,我分別利用了三種實驗方法來探討這個主題,分成:1. 細胞外記錄實驗,在腦切片內記錄視叉上核神經元的自發性動作電位頻率。2. blind patch全細胞電流箝制術實驗,記錄細胞膜電位的變化。3. 「小塊組織」(mini-explant)全細胞電壓箝制術實驗,記錄麩胺酸對於視叉上核神經元離子電流的作用,這個「小塊組織」實驗法也是本實驗室自行發展出的新技術。實驗結果發現,麩胺酸會使視叉上核神經元的自發性動作電位頻率增加以及細胞膜電位去極化。接著在「小塊組織」的實驗中,則是第一次發現到,麩胺酸會抑制視叉上核的鉀離子電流。改變電壓會影響麩胺酸抑制鉀離子電流的作用,表示這個抑制作用是具有電壓依賴性的。若將細胞外溶液換成無鈣溶液,並不會影響這個抑制作用,所以細胞外鈣離子的存在對於麩胺酸抑制鉀離子電流並不是必須的。而且,麩胺酸所抑制的電流有很大部分是對TEA敏感的鉀離子電流。由實驗結果以及前人研究可以推測得知,麩胺酸所抑制的電流應該是延遲整流性鉀離子電流。而且,麩胺酸的作用機轉以間接透過麩胺酸受器再去活化其他機制的可能性較高。根據這樣的實驗結果,可以推想的是,或許麩胺酸抑制延遲整流性鉀離子電流而改變動作電位的波形或頻率,進而影響視叉上核神經元的興奮性。

The suprachasmatic nucleus (SCN) of the hypothalamus is a major pacemaker for circadian rhythms in mammals. The spontaneous firing rate of SCN shows a spontaneous 24-h oscillation in vitro. Glutamate is the primary excitatory neurotransmitter that mediates photic entrainment and causes phase-shift of the neuronal activity rhythms. In this study, I use three different series of experiments to examine the effects of glutamate on the electrophysiological activities of the SCN neurons. The spontaneous firing rate and membrane potential of the SCN neurons in brain slices were investigated by extracellular recording and whole-cell current-clamp technique, respectively. Furthermore, the effects of glutamate on ionic currents in SCN neurons were examined with the whole-cell voltage-clamp technique in “mini-explant” method, a new method developed in our lab. Glutamate depolarizes SCN neurons and increases their firing rate. Moreover, glutamate inhibits potassium current in SCN neurons in “mini-explant” method. The inhibition was voltage-dependent and not influenced by extracellular calcium. The currents inhibited by glutamate are mostly TEA-sensitive. The results suggest that delayed rectifier potassium current is probably the major target of glutamate inhibition. The mechanisms of the glutamate inhibition may mediate through glutamate receptors, then activated others intracellular pathways. Inhibition of the delayed rectifier potassium current by glutamate could in turn influence the excitability of SCN neurons.

目錄
圖次………………………………………………….iv
中文摘要……………………………………………..v
英文摘要………………………………………….....vi
緒論…………………………………………………..1
材料與方法…………………………………………12
結果…………………………………………………17
討論…………………………………………………24
結論…………………………………………………31
參考文獻……………………………………………44
圖 次
圖一、視叉上核小塊組織示意圖…………………………………….32
圖二、小塊組織實驗中所記錄的電流-電壓關係圖…………………33
圖三、細胞外記錄:麩胺酸使視叉上核神經元自發性動作電位頻率增加……………………………………………………………….34
圖四、比較不同濃度的麩胺酸造成自發性動作電位頻率增加的百分比……………………………………………………….………35
圖五、麩胺酸對於細胞膜電位的作用……………………………….36
圖六、麩胺酸抑制視叉上核神經元之鉀離子電流………………….37
圖七、麩胺酸的抑制作用並非電流本身的減少…………………….38
圖八、麩胺酸對鉀離子電流的抑制作用是不可逆的……………….39
圖九、比較不同測試電壓下,麩胺酸對鉀離子電流的作用……….40
圖十、在無鈣溶液下,麩胺酸對鉀離子電流的作用……………….41
圖十一、比較控制溶液以及無鈣溶液下,麩胺酸造成鉀離子電流的抑制比例………………………………………………………..42
圖十二、1mM TEA對麩胺酸抑制作用的影響……………………...43

參考文獻
Abe, H., Rusak, B. and Robertson, H. A. Photic induction of fos protein in the suprachiasmatic nucleus is inhibited by the NMDA receptor antagonist MK-801. Neurosci. Lett. 127: 9-12,1991.
Akasu, T., Shoji, S. and Hasuo, H. Inward rectifier and low-threshold calcium currents contribute to the spontaneous firing mechanism in neurons of the rat suprachiasmatic nucleus. Pflugers Arch. 425: 109-116.
Aronin, N., Sagar, S. M., Sharp, F. R. and Schwartz, W. J. Light regulates expression of a fos-related protein in rat suprachiasmatic nucleus. Proc. Natl. Acad. Sci. USA 87: 5959-5962, 1990.
Biello, S.M., Golombek, D. A. and Harrington, M. E. Neuropeptide Y and glutamate block each other’s phase shifts in the suprachiasmatic nucleus in vitro. Neuroscience 77: 1049-1057, 1997.
Bouskila, Y. and Dudek, F. E. A rapidly activating type of outward rectifier K+ current and A-current in rat suprachiasmatic nucleus neurons. J. Physiol. 488: 339-350, 1995.
Cahill, G. M. and Menaker, M. Effects of excitatory amino acid receptor antagonists and agonists on suprachiasmatic nucleus responses to retinohypothalamic tract volleys. Brain Res. 479: 76-82, 1989.
Chen, G. and van den Pol, A. N. Coexpression of multiple metabotropic glutamate receptors in axon terminals of single suprachiasmatic nucleus neurons. J. Neurophysiol. 80: 1932-1938, 1998.
De Jeu, M. T. G. and Pennartz, C. M. A. Functional characterization of the H-current in SCN meurons in subjective day and night: a whole-cel paatch-clamp study in acutely prepared brain slices. Brain Res. 767: 72-80, 1997.
Ding, J. M., Buchanan, G. F., Tischkau, S. A., Chen, D., Kuriashkina, L., Faiman, L. E., Alster, J. M., McPherson, P. S., Campbell, K. P. and Gillette, M. U. A neuronal ryanodine receptor mediates light-induced phase delays of the circadian clock Nature 394: 381-384, 1998.
Ding, J. M., Chen, D., Weber, E. T., Faiman, L. E., Rea, M. A. and Gillette, M. U. Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. Science 266: 1713-1717, 1994.
Fagni, L., Chavis, P., Ango, F. and Bockaert, J. Complex interactions between mGluRs, intracelllar Ca2+ stores and ion channels in neurons. Trends Neurosci. 23: 80-88, 2000.
Ghosh, P. K., Baskaran, N. and van den Pol, A. N. Developmentally regulated gene expression of all eight metabotropic glutamate receptors in hypothalamic suprachiasmatic and arcuate nuclei--a PCR analysis. Dev. Brain Res. 102: 1-12, 1997.
Gillette, M. U. Regulation of entrainment pathways by the suprachiasmatic nucleus circadian clock: sensitivities to second messengers. Prog. Brain Res. 111: 121-132, 1996.
Ginty, D. D., Kornhauser, J. M., Thompson, M. A., Bading, H., Mayo, K. E., Takahashi, J. S. and Greenberg, M. E. Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science 260: 238-241, 1993.
Green, D.J. and Gillette, R. Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic slice. Brain Res. 245: 198-200, 1982.
Haak, L. L. Metabotropic glutamate receptor modulation of glutamate responses in the suprachiasmatic nucleus. J. Neurophysiol. 81: 1308-1317, 1999.
Hay, M. and Lindsley, K. A. Metabotropic glutamate receptor inhibition of visceral afferent potassium currents. Brain Res. 698: 169-174, 1995.
Hollmann, M. and Heinemann, S. Cloned glutamate receptors. Annu. Rev. Neurosci. 17: 31-108, 1994.
Houzen, H., Kanno, M. and Kikuchi, S. AMPA/kainate receptor activation inhibits neuronal delayed rectifier K+ current via Na+ entry in rat cortical neurons. Biochemical and Biophysical Res. Comm. 243: 617-621, 1998.
Huang, R. C. Sodium and calcium currents in acutely dissociated neurons from rat suprachiasmatic nucleus. J. Neurophysiol. 70: 1692-1703, 1993.
Huang, R.C., Peng, Y. W. and Yau, K. W. Zinc modulation of a transient potassium current and histochemical localization of the metal in neurons of the suprachiasmatic nucleus. Proc. Natl. Acad. Sci. USA 90: 11806-11810, 1993.
Hunt, A. E., McAthur, A. J. and Gillette, M. U. Melatinin action via protein kinase C in the SCN if the rat. Soc. Neurosci. Abstr. 21: 1676, 1995.
Inouye, S. and Kawanura, H. Persistence of circadian rhythmicity in a mammalian hypothalamic island containing the suprachiasmatic nucleus. Proc. Natl. Acad. Sci. USA 76: 5962-5966, 1979.
Jiang, Z. G., Allen, C. N. and North, R. A. Presynaptic inhibition by baclofen of retinohypothalamic excitatory synaptic inhibition by rat suprachiasmatic nucleus. Neuroscience 64: 813-819, 1995.
Kornhauser, J. M., Nelson, D. M., Mayo, K. E. and Takahashi, J. S. Photic and circadian regulation of c-fos gene expression in the hamster suprachiasmatic nucleus. Neuron 5: 127-134, 1990.
Liou, S. Y., Shibata, S., Iwasaki, K. and Ueki, S. Optic nerve stimulation induced increase of release of 3H-glutamate and 3H-aspartate but not 3H-GABA from the suprachiasmatic nucleus in slices of rat hypothalamus. Brain Res. Bull.16: 527-531, 1986.
Liu, C. and Gillette, M. U. Cholinergic regulation of the suprachiasmatic nucleus circadian rhythm via a muscarinic mechanism at night. J. Neurosci. 16: 744-751, 1996.
Mathur, A., Golomberk, D. A. and Ralph, M. R. cGMP-dependent protein kinase inhibitors block light-induced phase advances of circadian rhythms in vivo. Am. J. Physiol. 270: R1031-1036, 1996.
Maywood, E. S., Smith, E., Hall, S. J. and Hasting, M. H. A thalamic contribution to arousal-induced non-photic entrainment of the circadian clock of the Syrian hamster. Eur. J. Neurosci. 9: 1739-1747, 1997.
Meijer, J. H., Albus, H., Weidema, F. and Ravesloot, J.—H. The effects of glutamate on membrane potential and discharge rate of suprachiasmatic neurons. Brain Res. 603: 284-288, 1993.
Michel, S., Geuse, M. E., Zaritsky, J. J. and block, G. D. Circadian rhythm in membrane conductance expressed in isolated neurons. Science 259: 239-241, 1993.
Mintz, E. M., Marvel, C. L., Gillespie, C. F., Price, K. M. and Albers, H. E. Activation of NMDA receptors in the suprachiasmatic nucleus produces light-like phase shifts of the circadian clock in vivo. J. Neurosci. 19: 5124-5130, 1999.
Moga, M. M. and Moore, R. Y. Afferents to the suprachiasmatic nucleus shown by anterograde and retrograde tracing studies. J. Comp. Neurol. 389: 508-534, 1997.
Moore, R. Y. and Eichler, V. B. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res.42: 201-206, 1972.
Moore, R. Y. and Lenn, N. J. A retinohypothalamic projection in the rat. J. Comp. Neurol. 146: 1-14, 1972.
Moore, R. and Speh, J. GABA is the principal neurotransmitter of the circadian system. Neurosci. Lett. 150: 112-116, 1993.
Penev, P. D., Turek, F. W., Wallen, E. P. and Zee, P. C. Aging alters the serotonergic modulation of light-induced phase advances in golden hamsters. A. J. physiol. 272: R509-513, 1997.
Pickard, G. E. and Rea, M. A. TFMPP, a 5HT1B receptor agonist, inhibits light-induced phase shifts of the circadian activity rhythm and c-fos expression in the mouse suprachiasmatic nucleus. Neurosci. Lett. 231: 95-98, 1997.
Prosser, R. A. and Gillette, M. U. The mammalian circadian clock in rhe suprachiasmatic nuclei is reset in vitro by cAMP. J. Neurosci. 9: 1073-1081, 1989.
Rea, M. A. Light increases fos-related protein immunoreactivity in the rat suprachiasmatic nuclei. Brain Res. Bull. 23: 577-581, 1989.
Rusak, B., Robertson, H. A., Wisden, W. and Hunt, S. P. Light pulses that shift rhythms induce gene expression in the suprachiasmatic nucleus. Science 248: 1237-1240, 1990.
Schaap, J., Bos, N. P. A., de Jeu, M. T. G., Geurtsen, A. M. S., Meijer, J. H. and Pennartz, C. M. A. Neurons of the rat suprachiasmatic nucleus show a circadian rhythm in membrane properties that is lost during prolonged whole-cell recording. Brain Res. 815: 154-166, 1999.
Schrager, L. A. and Tasker, J. G. Modulation of multiple potassium currents by metabotropic glutamate receptors in neurons of the hypothalamic supraoptic nucleus. J. Neurophysiol. 78: 3428-3437, 1997.
Scott, G. and Rusak, B Activation of hamster suprachiasmatic neurons in vitro via metabotropic glutamate receptors. Neuroscience 71: 533-541, 1996.
Shirakawa, T. and Moore, R. Y. Responses of rat suprachiasmatic nucleus neurons to substance P and glutamate in vitro. Brain Res. 642: 213-220, 1994.
Stephan, F. K. and Zucker, I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. Natl. Acad. Sci. USA 69: 1583-1586, 1972.
Stopa, E. G., Johnson, J. K., Friedman, D. I., Ryer, H. I., Reidy, J., LeBlanc, V. K. and Albers, H. E. Neuropeptide Y receptor distribution and regulation in the suprachiasmatic nucleus of the Syrian hamster (Mesocricetus auratus). Peptide Res. 8: 95-100, 1995.
Strecker, G. J., Wuarin, J. P. and Dudek, F. E. GABAA-mediated local synaptic pathways connect neurons in the rat suprachiasmatic nucleus. J. Neurophysiol. 78: 2217-2220, 1997.
Summer, T. L., Ferraro, J. S. and McCormack, C. E. Phase-response and Aschoff illuminance curves for locomotor activity rhythm of the rat. Am. J. Physiol. 246: R299-304, 1984.
van den Pol, A. N. The hypothalamic suprachiasmatic nucleus of rat: intrinsic anatomy. J. Comp. Neurol. 191: 661-702, 1980.
van den Pol, A. N., Strecker, G. J. and Dudek, F. E. Excitatory and inhibitory amino acids and synaptic transmission in the suprachiasmatic nucleus. Prog. Brain Res. 111: 41-56, 1996.
van Esseveldt, K. E., Lehman, M. N. and Boer, G. J. The suprachiasmatic nucleus and the circadian time-keeping system revisited. Brain Res. Brain Res. Reviews 33: 34-77, 2000.
Walsh, I. B., Berg, R. J. van den and Rietveld, W. J. Ionic currents in cultured rat suprachiasmatic neurons. Neuroscience 69: 915-929, 1995.
Watts, A. G. The efferent projections of the suprachiasmatic nucleus: anatomical insights into the control of circadian rhythms. In: Klein, D. C., Moore, R. Y. and Reppert, S. M. (Eds.) Suprachiasmatic nucleus. the Mind’s Clock, Oxford University Press, New York, pp. 77-106, 1991.
Weber, E. T., Gannon, R. L., Michel, A. M., Gillette, M.U. and Rea, M. A. Nitric oxide inhibitor blocks light-induced phase shifts of the circadian activity rhythm, but not c-fos expression in the suprachiasmatic nucleus of the Syrian hamster. Brain Res. 692: 137-142, 1995a.
Weber, E. T., Gannon, R. L. and Rea, M. A. cGMP-dependent protein kinase inhibitor blocks light-induced phase advances of circadian rhythms in vivo. Neurosci. Lett. 197: 227-230, 1995b.
Wollnik, F., Brysch, W., Uhlmann, E., Gillardon, F., Bravo, R., Zimmermann, M., Schlingensiepen, K. H. and Herdegen, T. Block of c-Fos and JunB expression by antisense oliginucleotides inhibits light-induced phase shifts of the mammalian circadian clock. Eur. J. Neurosci.7: 388-393, 1995.
Wu, R. L. and Barish, M. E. Modulation of a slowly inactivating potassium current, I(D), by metabotropic glutamate receptor activation in cultured hippocampal pyramidal neurons. J. Neurosci. 19: 6825-6837, 1999.
Xia, Z., Dudek, H., Miranti, C. K. and Greenberg, M. E. Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J. Neurosci. 16: 5425-5436, 1996.
Bosler, O. and Beaudet, A. VIP neurons as prime synaptic targets for serotonin afferents in rat suprachiasmatic nucleus: a combined radioautographic and immunocytochemical study. J. Neurocytol. 14: 749-763, 1985.
Card, J. P., Brecha, N., Karten, H. J. and Moore, R. Y. Immunocytochemical localization of vasoactive intestinal polypeptide-containing cells and processes in the suprachiasmatic nucleus of the rat: light and electron microscopic analysis. J. Neurosci. 1: 1289-1303, 1981.
Card, J. P., Fitzpatrick-McElligott, S., Gozes, I. and Baldino F, J. r. Localization of vasopressin-, vasoactive intestinal polypeptide-, peptide histidine isoleucine- and somatostatin-mRNA in rat suprachiasmatic nucleus. Cell Tissue Res. 252: 307-315, 1988.
Card, J. P. and Moore, R. Y. Organization of lateral geniculate-hypothalamic connections in the rat. J. Comp. Neurol. 284: 135-147, 1989.
Chen, D., Buchanan, G. F., Ding, J. M., Hannibal, J. and Gillette, M. U. Pituitary adenylyl cyclase-activatng peptide: a pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock. Proc. Natl. Acad. Sci. USA 96: 13468-13473, 1999.
Earnest, D. J., Iadarola, M., Yeh, H. H. and Olschowska, J. A. Photic regulation of c-fos expression in neural components governing the entrainment of circadian rhythms. Exp. Neurol 109: 353-361, 1990.
Francois-Bellan, A. M. and Bosler, O. Convergent serotonin and GABA innervation of VIP neurons in the suprachiasmatic nucleus demonstrated by triple labeling in the rat. Brain Res. 595: 149-153, 1992.
Michel, S., Manivannan, K., Zaritsky, J. J. and Block, G. D. A delayed rectifier current is modulated by the circadian pacemaker in Bulla. J. Biol. Rhythms 14: 141-150, 1999.
Mikkelsen, J. D., Larsen, P. J., O’Hare, M. M. and Wiegand, S. J. Gastrin releasing peptide in the rat suprachiasmatic nucleus: an immunohistochemical, chromatographic and radioimmunological study. Neuroscience 40: 55-66, 1991.
Moore, R. Y. Entrainment pathways and the functional organization of the circadian system. Prog. Brain Res. 111: 103-119, 1996.
Pennertz, C. M. A., Bierlaagh, M. A. and Geurtsen, A. M. S. Cellular mechanisms underlying spontaneous firing in rat suprachiasmatic nucleus: involvement of a slowly inactivating component of sodium current. J. Neurophysiol. 78: 1811-1825, 1997.
Sims, K. B., Hoffman, D. L., Said, S. I. and Zimmerman, E. A. Vasoactive intestinal polypeptide (VIP) in mouse and rat brain: an immunocytochemical study. Brain Res. 186: 165-183, 1980.
Swaab, D. F., Pool, C. W. and Nijveldt, F. Immunofluorescence of vasopressin and oxytocin in the rat hypothalamo-neurohypophypopseal system. J. Neural Transm. 36: 195-215, 1975.
Swanson, L. W., Cowan, W. M. and Jones, E. G. An autoradiographic study of the efferent connections of the ventral lateral geniculate nucleus in the albino rat and cat. J. Comp. Neurol. 156: 143-163, 1974.
van den Pol, A. N., Obrietan, K. and Belousov, A. NPY modulation of hopothalamic glutamate transmission. Soc. Neurosci. Abstr. 22: 430, 1995.
van den Pol, A. N. and Tsujimoto, K. L. Neurotransmitters of the hypothalamic suprachiasmatic nucleus: immunocytochemical analysis of 25 neuronal antigens. Neuroscience 15: 1049-1086, 1985.
Vandesande, F., Dierickx, K. and DeMey, J. Identification of the vasopressin-neurophysin producing neurons of the rat suprachiasmatic nuclei. Cell Tissue Res. 156: 377-380, 1975.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top