跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/27 11:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:游碧堉
研究生(外文):You, Bih-Yuh
論文名稱:快得寧農藥致基因毒性機轉之研究
論文名稱(外文):Mechanism of cupric 8-quinolinoxide-induced genotoxicity
指導教授:郭明良郭明良引用關係
指導教授(外文):Kuo, Min-Liang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:毒理學研究所
學門:醫藥衛生學門
學類:其他醫藥衛生學類
論文種類:學術論文
論文出版年:2000
畢業學年度:89
語文別:中文
論文頁數:111
中文關鍵詞:快得寧基因毒性活性氧化物
外文關鍵詞:cupric 8-quinolinoxidegenotoxicityreactive oxygen species
相關次數:
  • 被引用被引用:0
  • 點閱點閱:896
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
快得寧農藥 (cupric 8-quinolinoxide, oxine copper, CuQ) 由二分子8-hydroxyquinoline (OHQ) 螯合銅離子而來,有鑑於OHQ為基因毒性物質且已被國際癌症研究署列為”疑致癌物”,本文因而探討該農藥原體的致變異或致癌可能性及其致毒機轉。論文首先以六種短期試驗方法 (short-term tests) 研究快得寧農藥原體在基因 (genetic) 與非基因 (epigenetic) 的途徑之致癌可能:由於快得寧不影響培養細胞的間隙通訊 (gap junctional intercellular communication),餵飼處理對大鼠肝臟腫瘤的生成亦無促進作用 (tumor promotion effect),快得寧可能不具非基因途徑的致癌影響。然而快得寧經基因毒性試驗結果則顯示:其可直接傷害鼠肺細胞 (V79) 的DNA,經肝臟酵素活化後對細胞的DNA傷害更甚,且增強對枯草菌 (Bacillus subtilis) 的DNA傷害,並顯著引起沙門菌 (Salmonella typhimurium) 的鹽基置換變異反應,而倉鼠卵巢細胞 (CHO) 的姊妹染色體交換也因快得寧之處理劑量而顯著增多,快得寧農藥原體對生物確具基因毒性。而由快得寧引起細菌及細胞的基因毒性都可用N-acetylcysteine、pyrrolidinedithiocarbamate、vitamin C或vitamin E等抗氧化劑有效抑制的結果推測:快得寧的致毒原因應與其引起氧化性傷害有關,利用螢光探針檢測技術確可於試管及細胞內觀測到快得寧促使活性氧化物的生成,而抗氧化劑對快得寧引起的活性氧化物生成及細胞內P53蛋白的刺激表現等抑制性也反映了快得寧對DNA的傷害與引起氧化性傷害之間的關聯。論文最後則探討快得寧在細胞內生成活性氧化物的可能機轉為:快得寧在細胞內可嵌合含硫胺基酸等水溶性小分子形成錯化合物致使快得寧部分解離,在OHQ主結構的C8-hydroxyl位置上經類似Fenton reaction反應生成自由基,而緊鄰的銅離子則可與微量的亞鐵離子形成氧化還原循環促使細胞在有氧環境中生成更多的活性氧化物。

Cupric 8-quinolinoxide (CuQ), derived from 8-hydroxyquinoline (OHQ) bischelated with copper, is an extensively used fungicide in Taiwan. The mutagenicity and questionable carcinogenicity of OHQ lead us to re-evaluate the mutagenicity and carcinogenicity of CuQ and their possible mechanism. Our results demonstrated that CuQ did not exert epigenetic carcinogenicity because it neither inhibited gap junctional intercellular communication in V79 cells nor induced tumor-promoting effect on hepatocarcinogenesis in Wistar rat. However, the genetic toxicity of CuQ was observed in certain short-term tests, e.g. Ames test, rec assay, comet assay and sister chromatid exchange assay. CuQ directly damage the cellular DNA of V79 cells as determined by comet assay. The DNA-damaging effect of CuQ was potentiated by addition of rat liver S9. CuQ treatment caused a dose-dependent increase of the gene mutation in Salmonella typhimurium TA100 and sister chromatid exchanges in CHO cells under the presence of S9. To explore by which the mechanism of CuQ induced genotoxicity, we examined the intracellular level of reactive oxygen species (ROS) in CuQ-treated cells by using the DCFH-DA fluoroprobe. Our data revealed that CuQ exposure could generate approximately 4-5 fold increase of ROS in V79 cells. Additionally, several antioxidants including, pyrrolidinedithiocarbamate, N-acetylcysteine, vitamins C and E could effectively block the CuQ-induced gene mutation, DNA damage, ROS generation, and P53 expression. CuQ could interact with intracellular thiol-containing molecules, such as cysteine and GSH to form complex, which results in partial dissociation of CuQ and loosens the stringent association between OHQ and copper structure. Therefore, the OHQ may generate semiquinone radical at the C8-hydroxyl position through Fenton reaction, while the nearby copper ion could interact with ferrous ion to form a redox cycle that facillitate more ROS generation in cells. We thus suggest that ROS generation is involved in the CuQ-induced genotoxic effect and p53 expression via a Fenton-like reaction.

封面
目錄
誌謝
中文摘要
英文摘要
第一章 緒言
第一節 快得寧農藥簡介
第二節 快得寧農藥的原料化合物8-hydroxyquinoline為致變異性化合物
第三節 快得寧農藥之致變異性與致癌可能性評估策略
第四節 快得寧農藥致基因毒性機轉之研究策略
第五節 快得寧農藥在細胞內生成活性氧化物之機轉研究策略
第二章 快得寧農藥之致變異性與致癌可能性評估
第一節 摘要
第二節 前言
第三節 材料與方法
3-1 供試藥劑
3-2 供試生物材料及培養方法
3-3 肝臟活化酵素之製備
3-4 沙門菌回復突變試驗
3-5 枯草菌重組檢定
3-6 彗星試驗
3-7 姊妹染色體交換試驗
3-8 染劑在細胞間隙之傳訊試驗
3-9 二階段肝腫瘤促進試驗
第四節 結果
4-1 快得寧農藥對沙門菌的基因變異影響
4-2 快得寧農藥對枯草菌的DNA傷害影響
4-3 快得寧農藥對V79細胞的DNA傷害影響
4-4 快得寧農藥對CHO細胞的姊妹染色體交換影響
4-5 快得寧農藥對V79細胞之間隙傳訊影響
4-6 快得寧農藥對大鼠生成肝臟腫瘤的促進影響
第五節 討論
圖表
第三章 活性氧化物在快得寧引起之基因毒性中扮演的角色
第一節 摘要
第二節 前言
第三節 材料與方法
3-1 供試藥劑
3-2 供試生物材料及培養方法
3-3 基因毒性試驗
3-4 試管中活性氧化物生成檢測
3-5 培養細胞中活性氧化物生成檢測
3-6 西方墨點分析法
3-7 統計分析
第四節 結果
4-1 抗氧化劑抑制快得寧農藥對沙門菌的基因變異影響
4-2 抗氧化劑抑制快得寧對V79細胞的DNA傷害
4-3 快得寧在生體外生成活性氧化物需要亞鐵離子
4-4 抗氧化劑減少快得寧引起的細胞內活性氧化物生成量
4-5 抗氧化劑減少快得寧對P53的刺激表現量
第五節 討論
圖表
第四章 快得寧生成活性氧化物之機轉
第一節 摘要
第二節 前言
第三節 材料與方法
3-1 供試藥劑
3-2 V79細胞中的活性氧化物含量檢測
3-3 Tris緩衝液中活性氧化物的生成量檢測
3-4 高效液相層析檢定OHQ自快得寧溶液解離釋出量
3-5 原子吸光光譜分析檢定銅離子自快得寧溶液解離釋出量
3-6 統計分析
第四節 結果
4-1 快得寧及其原料化合物在生體外生成活性氧化物之反應皆需亞鐵離子
4-2 快得寧生成活性氧化物的主要結構來源為OHQ的C8-hydroxyl位置
4-3 快得寧在細胞內生成活性氧化物之能力比OHQ強
4-4 細胞內含硫小分子或肝臟酵素抽出液與細胞液皆增強快得寧在試管中生成活性氧化物的反應
4-5 快得寧在中性Tris溶液中少量解離
第五節 討論
圖表
其他

1. C.D.S. Tomlin (Ed.), The pesticide manual, 11th Ed. British Crop Protection Council, UK (1997) p. 1606.
2. R.T. Meister (Ed.), Farm chemicals handbook, Vol. 85, Meister (1999) C104.
3. Anonymous, Copper 8-hydorxyquinoline, IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans, 15 (1977) 103-110.
4. BIBRA working group, Copper 8-quinolate, Toxicity profile, The British Industrial Biological Research Association (1987) 3 P.
5. Anonymous, Toxicity of 8-hydroxyquinolate, J. Pest. Sci. 16 (1991) 563-567 (in Japanese).
6. 臺灣省政府農林廳編印, 植物保護手冊 (1998).
7. 臺灣區農藥工業同業公會編印, 農藥產銷統計 (1989-1998).
8. M. Nagao, T. Yahagi, Y. Seino, T. Sugimura, N. Ito, Mutagenicities of quinoline and its derivatives, Mutation Res. 42 (1977) 335-342.
9. S.J. Rinkus, M.S. Legator, Chemical characterization of 465 known or suspected carcinogens and their correlation with mutagenic activity in the Salmonella typhimurium system, Cancer Res. 39 (1979) 3289-3318.
10. E. Gocke, M.-T. King, K. Eckhardt, D. Wild, Mutagenicity of cosmetics ingredients licensed by the European Communities, Mutation Res. 90 (1981) 91-109.
11. A.S. Sideropoulos, S.M. Specht, Evaluation of microbial testing methods for the mutagenicity of quinoline and its derivatives, Curr. Microb. 11 (1984) 59-65.
12. E. Zeiger, B. Anderson, S. Haworth, T. Lawlor, K. Mortelmans, Salmonella mutagenicity tests: IV. Results from the testing of 300 chemicals, Environ. Mol. Mutagen. 11 (Suppl. 12, 1988) 1-158.
13. J. Ashby, R.W. Tennant, Definitive relationships among chemical structure, carcinogenicity and mutagenicity for 301 chemicals tested by the U.S. NTP, Mutation Res. 257 (1991) 229-306.
14. M.I. Willems, G. Dubois, D.R. Boyd, R.J.H. Davies, L. Hamilton, J.J. McCullough, P.J. van Bladeren, Comparison of the mutagenicity of quinoline and all monohydroxyquinolines with a series of arene oxide, trans-dihydrodiol, diol epoxide, N-oxide and arene hydrate derivatives of quinoline in the Ames/Salmonella microsome test, Mutation Res. 278 (1992) 227-236.
15. T.-H. Ma, Vicia cytogenetic tests for environmental mutagens, A report of the U.S. Environmental Protection Agency Gene-Tox Program, Mutation Res. 99 (1982) 257-271.
16. J.L. Epler, W. Winton, T. Ho, F.W. Larimer, T.K. Rao, A.A. Hardigree, Comparative mutagenesis of quinolines, Mutation Res. 39 (1977) 285-296.
17. M.J. Armstrong, C.L. Bean, S.M. Galloway, A quantitative assessment of the cytotoxicity associated with chromosomal aberration detection in Chinese hamster ovary cells, Mutation Res. 265 (1992) 45-60.
18. J. Ashby, R. Mohammed, P.A. Lefevre, L. Bandara, Quinoline: Unscheduled DNA synthesis and mitogenesis data from the rat liver in vivo, Environ. Mol. Mutagen. 14 (1989) 221-228.
19. M.A. Hamoud, T. Ong, M. Petersen, J. Nath, Effects of quinoline and 8-hydroxyquinoline on mouse bone marrow erythrocytes as measured by the micronucleus assay, Terat. Carcinogen. Mutagen. 9 (1989) 111-118.
20. TOXNET Data Bank, National Library of Medicine Specialized Information Services (1999).
21. M. Moriya, T. Ohta, K. Watanabe, T. Miyazawa, K. Kato, Y. Shirazu, Further mutagenicity studies on pesticides in bacterial reversion assay systems, Mutation Res. 116 (1983) 185-216.
22. H. Gershon, L. Shanks, Reversal of fungitoxicity of 8-quinolinols and their copper(II) bischelates: II. Reversal of the action of 8-quinolinol by DL-a-lipoic acid, Can. J. Microbiol. 27 (1982) 612-615.
23. H. Gershon, A.T. Grefig, D.J. Cady, Evidence that the mechanisms of fungitoxicity of 8-quinolinol and its bischelate with copper(II) are different, Can. J. Microbiol. 31 (1985) 707-710.
24. H. Gershon, D.D. Clarke, M. Gershon, Synergistic antifungal action of 8-quinolinol and its bischelate with copper(II) and with mixed ligand chelates composed of copper(II), 8-quinolinol, and aromatic hydroxy acids, J. Pharm. Sci. 78 (1989) 975-987.
25. L.E. Kier, D.J. Brusick, A.E. Auletta, E.S. Von Halle, M.M. Brown, V.F. Simmon, V. Dunkel, J. McCann, K. Mortelmans, M. Prival, T.K. Rao, V. Ray, The Salmonella typhimurium/mammalian microsomal assay, A report of the U.S. Environmental Protection Agency Gene-Tox Program, Mutation Res. 168 (1986) 69-240.
26. T. Kada, K. Hirano, Y. Shirasu, Screening of environmental chemical mutagens by the rec-assay system with Bacillus subtilis, pp. 149-173. In “F.J. de Serres, A. Hollaender [Eds.], Chemical mutagens: principles and methods for their detection” Vol. 6 (1980) Plenum Press New York and London.
27. S.A. Latt, J. Allen, S.E. Bloom, A. Carrano, E. Falke, D. Kram, E. Schneider, R. Schreck, R. Tice, B. Whitfield, S. Wolff, Sister-chromatid exchanges: A report of the gene-tox program, Mutation Res. 87 (1981) 17-62.
28. N.P. Singh, M.T. McCoy, R.R. Tice, E.L. Schneider, A simple technique for quantitation of low levels of DNA damage in individual cells, Exp. Cell Res. 175 (1988) 184-191.
29. M.H. El-Fouly, J.E. Trosko, C.C. Chang, Scrapeloading and dye-transfer: A rapid and simple technique to study gap junction intercellular communication, Exp. Cell Res. 168 (1987) 422-430.
30. D.B. Solt, E. Farber, New principle for the analysis of chemical carcinogens, Nature 263 (1976) 701-703.
31. J.L. Bolton, M.A. Trush, T.M. Penning, G. Dryhurst, T.J. Monks, Role of quinones in toxicology, Chem. Res. Toxicol. 13 (2000) 135-160.
32. J.J. Inbaraj, R. Gandhidasan, R. Murugesan, Cytotoxicity and superoxide anion generation by some naturally occurring quinones, Free Rad. Bio. & Med. 26 (1999) 1072-1078.
33. Y. Hiraku, S. Kawanishi, NADH-mediated DNA damage induced by a new coenzyme, pyrroloquinoline quinone, in the presence of copper (II) ion, FEBS letter 393 (1996) 317-320.
34. L. Flowers, S.T. Ohnishi, T.M. Penning, DNA strand scission by polycyclic aromatic hydrocarbon o-quinones: Role of reactive oxygen species, Cu(II)/Cu(I) redox cycling, and o-semiquinone anion radicals, Biochemistry 36 (1997) 8640-8648.
35. C.P. LeBel, H. Ischiropoulos, S.C. Bondy, Evaluation of the probe 2’, 7’-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress, Chem. Res. Toxicol. 5 (1992) 227-231.
36. Y. Hiraku, S. Kawanishi, Oxidative DNA damage and apoptosis induced by benzene metabolites, Cancer Res. 56 (1996) 5172-5178.
37. A.F. McFee, Genotoxic potency of three quinoline compounds evaluated in vivo in mouse marrow cells, Environ. Mol. Mutagen. 13 (1989) 325-331.
38. H. Nukaya, S. Koyota, F. Jinno, H. Ishida, K. Wakabayashi, R. Kurosaka, I.-S-. Kim, Z. Yamaizumi, H. Ushiyama, T. Sugimura, M. Nagao, K. Tsuji, Structural determination of a new mutagenic heterocyclic amine, 2-amino-1,7,9-trimethylimidazo[4,5-g]quinoxaline (7,9-diMeIgQx), present in beef extract, Carcinogenesis 15 (1994) 1151-1154.
39. A. Parkinson, Biotransformation of xenobiotics, in: C.D. Klassen, N.O. Amdur, J. Doull (Eds.), Casarett & Doull’s Toxicology, The Basic Science of Poisons, McGraw-Hill Press, 1996, pp. 113-186.
40. B.N. Ames, J. McCann, E. Yamasaki, Method for detecting carcinogens and mutagens with the Salmonella/mammalian microsome mutagenicity test, Mutation Res. 31 (1975) 347-364.
41. P.D. D’Andrea, F. Vittur, Gap junctions mediate intercellular calcium signaling in cultured articular chondrocytes, Cell Calcium 20 (1996) 389-397.
42. N.M. Kumar, N.B. Gilula, The gap junction communication channel, Cell 84 (1996) 381-388.
43. K.S. Kang, M.R. Wilson, T. Hayashi, C.C. Chang, J.E. Trosko, Inhibition of gap junctional intercellular communication in normal human breast epithelial cells after treatment with pesticides, PCBs, and PBBs, alone or in mixtures, Environ. Health Persp. 104 (1996) 192-200.
44. D.M. Maron, B.N. Ames, Revised method for the Salmonella mutagenicity test, Mutation Res. 113 (1983) 173-215.
45. K.Y. Jan, W.W. Sheng, W.N. Wen, A simplified fluorescence plus Giemsa method for consistent differential staining of sister chromatid, Stain Tech. 57 (1982) 45-46.
46. P. Perry, S. Wolff, New Giemsa method for the differential staining of sister chromatid, Nature 251 (1974) 156-158.
47. A.M. Rutenburg, H. Kim, J.W. Fishbeinm, J.S. Hanker, H.L. Wasserkrug, A.N. Seligman, Histochemical and ultrastructural demonstration of g-glutamyl transpeptidase activity, J. Histochem. Cytochem. 17 (1969) 517-526.
48. M.H. Hanigan, H.C. Pitot, Gamma-glutamyl transpeptidase — its role in hepatocarcinogenesis, Carcinogenesis 6 (1985) 165-172.
49. M.W. Liberman, R. Barrios, B.Z. Carter, G.M. Habib, R.M. Lebovitz, S. Rajagopalan, A.R. Sepulveda, Z.-Z. Shi, D.-F. Wan, g-Glutamyl transpeptidase, Am. J. Pathol. 147 (1995) 1175-1185.
50. D.R. Dietrich, Toxicological and pathological applications of proliferating cell nuclear antigen (PCNA), a novel endogenous marker for cell proliferation, CRC Rev. Toxicol. 23 (1993) 77-109.
51. R. Mehra, The potential for the use of cell proliferation and oncogene expression as intermediate markers during liver carcinogenesis, Cancer Letter 93 (1995) 85-102.
52. P.E. Hartman, B.N. Ames, J.R. Roth, W.M. Barnes, D.E. Levin, Target sequences for mutagenesis in Salmonella histidine-requiring mutants, Environm. Mutagen. 8 (1986) 631-641.
53. P.L. Olive, D. Wlodek, R.E. Durand, J.P. Banáth, Factors influencing DNA migration from individual cells subjected to gel electrophoresis, Exp. Cell Res. 198 (1992) 259-267.
54. D. Anderson, T.-W. Yu, B.J. Phillips, P. Schmezer, The effect of various antioxidants and other modifying agents on oxygen-radical-generated DNA damage in human lymphocytes in the COMET assay, Mutation Res. 307 (1994) 261-271.
55. D.G. Stetka, S. Wolff, Sister chromatid exchange as an assay for genetic damage induced by mutagen-carcinogens. II. In vitro test for compounds requiring metabolic activation, Mutation Res. 41 (1976) 343-350.
56. R. Mancini, L. Marucci, A. Benedetti, A.M. Jezequel, F. Orlandi, Immunohistochemical analysis of S-phase cells in normal human and rat liver by PC10 monoclonal antibody, Liver 14 (1994) 57-64.
57. M. Kranendonk, J. N. M. Commandeur, A. Laires, J. Rueff, N. P. E. Vermeulen, Characterization of enzyme activities and cofactors involved in bioactivation and bioinactivation of chemical carcinogens in the tester strains Escherichia coli K12 MX100 and Salmonella typhimurium LT2 TA100, Mutagenesis 12 (1997) 245-254.
58. A.K. Drabikowska, Electron transport system of Salmonella typhimurium cells, Acta Biochim. Polon. 17 (1970) 89-98.
59. G. Ribas, G. Frenzilli, R. Barale, R. Marcos, Herbicide-induced DNA damage in human lymphocytes evaluated by the single-cell gel electrophoresis (SCGE) assay, Mutation Res. 344 (1995) 41-54.
60. M.S. Connors, M.A. Malfatti, J.S. Felton, The metabolism and DNA binding of the cooked-food mutagen, 2-amino-1-methyl-6-phenyl imidazo[4,5-b]pyridine (PhIP) in precision-cut rat liver slices, Chemico-Biological Interactions 96 (1995) 185-202.
61. M.G. Knize, R. Sinha, N. Rothman, E.D. Brown, C.P. Salmon, O.A. Levander, P.L. Cunningham, J.S. Felton, Heterocyclic amine content in fast-food meat products, Fd. Chem. Toxic. 33 (1995) 545-551.
62. M. Nagao, M. Ochiai, R. Hasegawa, N. Ito, Dietary carcinogens and mammary carcinogenesis, Cancer 74 (1994) 1063-1069.
63. B.-Y. You, Y.-H. Wang, M.-L. Kuo, Evaluation of genotoxicity and carcinogenicity on fungicide, copper 8-hydroxyquinolate, by short-term tests, Plant Prot. Bull. 41 (1999) 119-132.
64. M.W. Liberman, R. Barrios, B.Z. Carter, G.M. Habib, R.M. Lebovitz, S. Rajagopalan, A.R. Sepulveda, Z.-Z. Shi, D.-F. Wan, -Glutamyl transpeptidase, Am. J. Pathol. 147 (1995) 1175-1185.
65. Y. Li, P. Kuppusamy, J.L. Zweir, M.A. Trush, Role of Cu/Zn-superoxide dismutase in xenobiotic activation. II. Biological effects resulting from the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone. Mol. Pharmacol. 49 (1996) 412-421.
66. S. Goldstein, D. Meyerstein, G. Czapski, The Fenton reagents, Free Rad. Biol. Med. 15 (1993) 435-445.
67. P. Wardman and L.P. Candeias, Fenton chemistry: An introduction in Fenton centennial symposium, Rad. Res. 145 (1996) 523-531.
68. A.H. Sarker, S. Watanabe, S. Seki, T. Akiyama, S. Okada, Oxygen radical-induced single-strand DNA breaks and repair of the damage in a cell-free system, Mutation Res. 337 (1995) 85-95.
69. C. Prives, P.A. Hall, The p53 pathway, J. Pathol. 187 (1999) 112-126.
70. F. Janus, N. Albrechtsen, I. Dornreiter, L. Wiesmüller, F. Grosse, W. Deppert, The dual role model for p53 in maintaining genomic integrity, Cell. Mol. Life Sci. 5 (1999) 12-27.
71. F. Carrier, I. Bae, M.L. Smith, D.M. Ayers, A.J. Fornance Jr. Characterization of the GADD45 response to ionizing radiation in WI-L2-NS cells, a p53 mutant cell line, Mutation Res. 352 (1996) 79-86.
72. B.N. Ames, W.E. Durston, E. Yamasaki, F.D. Lee, Carcinogens are mutagens: A simple test system combining liver homogenates for activation and bacteria for detection, Proc. Natl. Acad. Sci. USA. 70 (1973) 2281-2285.
73. Y. Li, P. Kuppusamy, J. L. Zweier, M. A. Trush, ESR evidence for the generation of reactive oxygen species from the copper-mediated oxidation of the benzene metabolite, hydroquinone: role in DNA damage, Chem.-Biol. Interac. 94 (1995) 101-120.
74. M. Chevion, A site-specific mechanism for free radical induced biological damage: the essential role of redox-active transition metals, Free Rad. Biol. Med. 5 (1988) 27-37.
75. Y. Li, M. A. Trush, Oxidation of hydroquinone by copper: chemical mechanism and biological effects, Arch. Biochem. Biophys. 300 (1993) 346-355.
76. H.C. Sutton, C.C. Winterbourn, On the participation of higher oxidation states of iron and copper in Fenton reactions, Free Radical Biol. Med. 6 (1989) 53-60.
77. S. Oikawa, S. Kawanishi, Site specific DNA damage induced by NADH in the presence of copper(II): role of active oxygen species, Biochemistry 25 (1996) 4584-4590.
78. D. Anderson, T.-W. Yu, D.B. McGregor, Comet assay responses as indicators of carcinogen exposure, Mutagenesis 13 (1998) 539-555.
79. M. Suematsu, G.W. Schmid-Schönbein, Y. Ishimura, M. Tsuchiya, Visual assessment of oxidative stress by multifunctional digital microfluorography, in: N. A. Punchard, F. J. Kelly (Eds), Free radicals, A practical approach, Oxford IRL Press, 1996, pp.83-99.
80. P. Rota, Y.C. Fann, R.P. Mason, Phenoxyl free radical formation during the oxidation of the fluorescent dye 2’, 7’-dichlorofluorescein by horseradish peroxidase, J. Biol. Chem. 274 (1999) 28161-28168.
81. K. Hensley, K.A. Robinson, S.P. Gabbita, S. Salsman, R.A. Floyd, Reactive oxygen species, cell signaling, and cell injury, Free Rad. Biol. Med. 28 (2000) 1456-1462.
82. R.G. Allen, M. Tresini, Oxidative stress and gene regulation, Free Rad. Biol. Med. 28 (2000) 463-499.
83. J. Lotem, M. Peled-Kamer, Y. Groner, L. Sachs, Cellular oxidative stress and the control of apoptosis by wild-type p53, cytotoxic compounds, and cytokines, Proc. Natl. Acad. Sci. USA. 93 (1996) 9166-9171.
84. S. Gansauge, F. Gansauge, H. Gause, B. Poch, M.H. Schoenberg, H.G. Beger, The induction of apoptosis in proliferating human fibroblasts by oxygen radicals is associated with a p53- and p21WAF1CIP1 induction, FEBS Letters 404 (1997) 6-10.
85. A.Y. Shen, S.N. Wu, C.T. Chiu, Synthesis and cytotoxicity evaluation of some 8-hydroxyquinoline derivatives, J. Pharm. & Pharmac. 51 (1999) 543-548.
86. P. Collery, F. Lechenault, A. Cazabat, E. Juvin, L. Khassanova, A. Evangelou, B. Keppler, Inhibitory effects of gallium chloride and tris (8-quinolinolato) gallium III on 549 human malignant cell line, Anticancer Res. 20 (2000) 955-958.
87. H.M.H. Carr, Limitations of in-vitro labeling of endothelial cells with Indium-111 oxine, Cell Transp. 4 (1995) 291-296.
88. W. Chiu, J.B. Amodio, S.C. Scharf, K.A. Rivlin, P. Desai, F. Breuer, Indium-111-oxine labeled leukocyte uptake in Ki-1-positive anaplastic large cell lymphoma, Pedia. Rad. 29 (1999) 631-3.
89. P. Leanderson, C. Tagesson, Iron bound to the lipophilic iron chelator, 8-hydroxyquinoline, causes DNA strand breakage in cultured lung cells, Carcinogenesis 17 (1996) 545-550.
90. S. Ronald, S. Fraser, J. Creanor, The mechanism of inhibition of ribonucleic acid synthesis by 8-hydroxyquinoline and the antibiotic lomofungin, Biochem. J. 147 (1975) 401-410.
91. A.R. Llorente, P. D. Castillo, J. C. Stockert, Aluminum binding to chromatin DNA as revealed by formation of fluorescent complexes with 8-hydroxyquinoline and other ligands, J. Microscopy 155 (1989) 227-230.
92. G.A. Zentmyer, S. Rich, J.G. Horsfall, Reversal of fungitoxicity of 8-quinolinol by amino acids and other chelators, Phytopathology, 50 (1960) 421-424.
93. R. Talcott, M. Hollstein, E. Wei, Mutagenicity of 8-hydroxyquinoline and related compounds in the Salmonella typhimurium, Biochemical Pharmacology 25 (1976) 1323-1328.
94. E.H. Bernstein, P.W. Pienta, H. Gershon, Acute toxicity studies on 8-quinolinol and some derivatives, Tox. & App. Pharm. 5 (1963) 599-604.
95. B.-Y. You, Y.-H. Wang, M.-L. Kuo, Role of reactive oxygen species in cupric 8-quinolinoxide-induced genotoxic effect and P53 expression, Mutation Res. (2000) GEH-000802 (in Print).
96. E. Marchesi, C. Rota, Y.C. Fann, C. F. Chignell, R.P. Mason, Photoreduction of the fluorescent dye 2’-7’-dichlorofluorescein: a spin trapping and direct electron spin resonance study wity implications for oxidative stress measurements, Free Rad. Biol. & Med. 26 (1999) 148-161.
97. R.G.W. Hollingshead, Oxine and its derivatives, Vol. 1, Butterworth, London (1954).
98. H. Kobayashi, O. Matano, S. Goto, Determination of oxine-copper in orange by gas chromatography, J. Chromatography 474 (1989) 381-387.
99. T. Suzuki, K. Yaguchi, I. Kano, Screening methods for asulam, oxine-copper and thiram in water by high-performance liquid chromatography after enrichment with a minicolumn, J. Chromatography 643 (1993) 173-179.
100. J.-L. Sagripanti, P.L. Goering, A. Lamanna, Interaction of copper with DNA and antagonism by other metals, Tox. & App. Pharm. 110 (1991) 477-485.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top