跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/13 21:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王貴靈
研究生(外文):Wang, Kuei-Ling
論文名稱:StreptococcusgordoniiATCC10588sodA基因之選殖與分析
論文名稱(外文):Molecular cloning and characterization of the sodA gene from Streptococcus gordonii ATCC 10588
指導教授:邱卓凡
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:微生物學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:74
中文關鍵詞:超氧化歧化酵素
外文關鍵詞:Streptococcus gordoniisodA geneMnSOD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:546
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
Streptococcus gordonii是草綠色鏈球菌種( viridans group strepto- cocci )之一,主要會在牙齒表面上形成牙菌斑引發齲齒。 超氧化歧化酵素( superoxide dismutases,SODs )為一種抗氧化酵素,會去除O2-以避免細胞遭受侵害。 本研究抽取S. gordonii細菌溶解液偵測SOD酵素活性,並用H2O2及DDC ( diethyldithiocarbamate )進行SOD活性抑制實驗,結果證實此菌的SOD為MnSOD。 SOD酵素活性在S. gordonii生長至靜止期時,達到最高,從指數期開始至靜止期止,增加了3到4倍。 為了探討金屬離子對S. gordonii SOD酵素活性之影響,將細菌培養在含有不同濃度Fe離子及Mn離子之培養基中,偵測培養24小時之菌體中SOD的活性。 結果證實S. gordonii的SOD蛋白質可以用Mn離子或Fe離子作為輔助因子而使SOD酵素活性恢復,其中,Mn離子恢復的酵素活性比Fe離子高,此SOD蛋白質為變異酵素( cambialistic enzyme )。 此結合Mn離子或Fe離子的酵素,其活性都不會被H2O2抑制。 本研究依據其他細菌SOD胺基酸序列的保守序列設計的一對引子,經PCR得到sod基因片段,為480 bp的部份序列,再利用genome Walker系統的方法選殖S. gordonii的sod基因的完整序列。 此基因含有603 bp的open reading frame,可轉譯出25.3 kD的SOD蛋白質。 此S. gordonii sodA基因的核酸序列與S. pneumoniae比對有高達81.51﹪的相同性,與S. agalactiae則有76.4﹪的相同性,SOD胺基酸序列與S. pneumoniae及S. mutans比對有89.05﹪及78.6﹪的相同性,相似性則高達90.54﹪及80.59﹪。將嵌入有S. gordonii sodA基因的pDESTTM15表現載體,轉形至E. coli BL21-SITM competent cells。 經誘導表現,生成約23 kD的蛋白質,且仍具有SOD酵素活性。

Streptococcus gordonii is a species of the viridans group streptococci, and is the major pathogen of dental caries. Superoxide dismutase, SOD, is an antioxidant enzyme, which scavenges O2-to protect cells from damage. In this study, we characterized the SOD of S. gordonii as an MnSOD by H2O2 and diethyldithiocarbamate inhibition test. Furthermore, we also found that the SOD has activity as a cambialistic enzyme, which can accept either iron or manganese as the cofactor to present enzyme activity. The activity of manganese —containing SOD was higher than that iron-containing SOD. The SOD activity of S. gordonii was variable in the growth phase of the organism, and was found three to four folds increasing from the exponential phase to the stationary phase.
The sodA gene of S. gordonii was cloned in this study. The gene contains 603 bp nucleotides. The nucleotide sequence of sodA has 81.51﹪identity to that of S. pneumoniae, and 76.4﹪to that of S. agalactiae. The amino acid sequence of this gene has 89.05﹪identity to that of S. pneumoniae, and 78.6﹪to that of S. mutans. It also has 90.54﹪similarity to that of S. pneumoniae, and 80.59﹪to that of S. mutans. The coding region of gene was recombined with native expression vector pDESTTM15 and was transformed into E. coli BL21-SI strain. After induction, the transformant expressed about 23 kD protein, which showed SOD activity by native PAGE gel analysis.

中文摘要………………………………………………I
英文摘要……………………………………………..III
緒論……………………………………………………1
實驗方法……………………………………………..10
實驗材料……………………………………………..25
結果…………………………………………………..31
討論…………………………………………………..37
圖表…………………………………………………..46
參考文獻……………………………………………..70

1.丁克祥, 邱仲峰, 呂鋒洲。1996。SOD生物醫學淺論。藝軒圖書。台
灣。台北。
2.李隆達。 1997。倒地鈴、一葉草、絞股藍、柑桔類及豆類之
超氧化物歧化酵素活性之研究。國立台灣大學博士論文。
3.Aranha, H., R. C. Strachan, J. E. L. Arceneaux, and B. R.
Byers. Effect of trace metals on growth of Streptococcus
mutans in a teflon chemostat. Infect. Immun. 35:456-460.
4.Beachamp, C., and I. Fridovich. 1971. Superoxide dismutase
improved assay and an assay applicable to acrylamide gels.
Anal. Biochem. 44:276-287.
5.Beck, B., L. B. Tabatabai, and J. E. Mayfield. 1990. A
protein isolated from Brucella abortus is a Cu-Zn superoxide
dismutase. Biochemistry 29:372-376.
6.Beighton, D. 1982. The influence of manganese on carbohydrate
metabolism and caries induction by Streptococcus mutans
strain Ingbritt. Caries Res. 16:189-192.
7.Benov, T. I., and I. Fridovich. 1994. Escherichia coli
expresses a copper-and zinc-containing superoxide dismutase.
J. Biol. Chem. 269:25310-25314.
8.Bentley, R. W., J. A. Leigh, and M. D. Collins. 1991.
Intrageneric structure of Streptococcus base on comparative
analysis of small- subunit rRNA sequences. Int. J. Syst.
Bacteriol. 41:487-494.
9.Beyer, W. F., Jr., and I. Fridovich. 1991. In vivo
competition between iron and manganese for occupancy of the
active site region of the manganese-superoxide dismutase of
Escherichia coli. J. Biol. Chem. 266:303-308.
10.Bochud, P. Y., A. Cometta, and P. Francioli. 1997. Virulent
infections caused by alpha-haemolytic streptococci in cancer
patients and their management. Curr. Opin. Infect. Dis. 10:
422-430.
11.Canvin, J., P. R. Langford, K. E. Wilks, and J. S. Kroll.
1996. Identification of sodC encoding periplasmic [Cu,Zn]-
Superoxide dismutase in Salmonella. FEMS Microbiol. Lett
136:215-220.
12.Carlioz, A., M. L. Ludwig, W. C. Stallings, J. A. Fee, H. M.
Steinman, and D. Touati. 1988. Iron superoxide dismutase:
nucleotide sequence of the gene from Escherichia coli K12
and correlations with crystal structures. J. Biol. Chem.
263:1555-1562.
13.Chang, S. K., and H. M. Hassan. 1997. Characterization of
superoxide dismutase in Streptococcus thermophilus. Appl.
Environ. Microbiol. 63:3732-3735.
14.Collazos J., E. Martinez, and J. Mayo. 1999. Spontaneous
bacterial peritonitis caused by Streptococcus gordonii. J.
Clin. Gastroenterol. 28:45-46.
15.Coykendall, A. L. 1989. Classification and identification of
the viridans streptococci. Clin. Microbiol. Rev. 2:315-328.
16.Douglas, C. W., J. Heath, K. K. Hampton, and F. E. Preston.
1993. Identity of viridans streptococci isolated from cases
of infective endocarditis. J. Med. Microbiol. 39:179-182.
17.Fridovich, I. 1989. Superoxide dismutase. An adaptation to a
paramagnetic gas. J. Biol. Chem. 264:7761-7764.
18.Gregory, E. M. , and C. H. Dapper. 1983. Isolation of iron-
containing superoxide dismutase from Bacteroides fragilis :
reconstitution as a Mn-containing enzyme. Arch. Biochem.
Biophys. 220:293-300.
19.Gregory, E. M. 1985. Characterization of the O2-induced
manganese-containing superoxide dismutase from Bacteroides
fragilis. Arch. Biochem. Biophys. 238:83-89.
20.Harty, D. W. S., J. A. Mayo, and S. L. Cook. 2000.
Enviromental regulation of glycosidase and peptidase
production by Streptococcus gordonii FSS2. Microbiology
146:1923-1931.
21.Hassan, H. M. 1989. Microbial superoxide dismutases. Adv.
Genet. 26:65-97.
22.Hassan, H. M., and J. R. Scchiavone. 1989. The role of
oxygen free radical in biology and evolution, pp.19-37.
InC., Bryant(ed.), Metazoan life without oxygen. Croom-Helm,
Canberra, Australia.
23.Imlay, K. R., and J. A. Imlay. 1996. Cloning and analysis of
sodC, encoding the copper-zinc superoxide dismutase of
Esherichia coli. J. Bacteriol. 178:2564-2571.
24.Kawamura, Y., X. G. Hou, F. Sultana, H. Mura, and T. Ezaki.
1995. Determination of 16S rRNA sequences of Streptococcus
mitis and Streptococcus gordonii and phylogenetic
relationships among members of the genus Streptococcus. Int.
J. Syst. Bacteriol. 45:406-408.
25.Kikuchi, K., T. Enari, K. I. Totsuka, and K. Shimizu. 1995.
Comparison of phenotypic characteristics, DNA-DNA
hybridization results, and results with a commercial rapid
biochemical and enzymatic reaction system for identification
of viridans group streptococci. J. Clin. Microbiol. 33:1215-
1222.
26.Krieg, N., and P. S. Hoffman. 1986. Microaerophily and
oxygen toxicity. Annu. Rev. Microbiol. 40:107-130.
27.Kroll, J. S., P. R. Langford, and B. M. Loynds. 1991. Copper-
Zinc superoxide dismutase of Haemophilus influenzae and
Haemophilus parainfluenzae. J. Bacteriol. 173:7449-7457.
28.Kroll, J. S., P. R. Langford, K. E. Wilk, and A. D. Keil.
1995. Bacterial [Cu,Zn]-superoxide dismutase:
phylogenetically distinct from the eukaryotic enzyme, and
not so rare after all! Microbiology 141:2271-2279.
29.Lancefield, R. C. 1993. A serological differentiation of
human and other groups of hemolytic streptococci. J. Exp.
Med. 57:571.
30.Lefebre, M. D., and M. A. Valvano. 2001. In vitro resistance
of Burkholderia cepacia complex isolates to reactive oxygen
species in relation to catalase and superoxide dismutase
production. Microbiology 147:97-109.
31.Lowen, P. C., and R. Hengge-Aronis. 1994. The role of the
sigma factor sS (KatF) in bacterial global regulation. Annu.
Rev. Microbiol. 48:53-80.
32.Martin, M. E., R. C. Strachan, H. Aranha, S. L. Evans, M. L.
Salin, B. Welch, J. E. L. Arceneaux, and B. R. Byers. 1984.
Oxygen toxicity in Streptococcus mutans: manganese, iron,
and superoxide dismutase. J. Bacteriol. 159:745-749.
33.Martin, M. E., B. R. Byers, M. O. J. Olson, M. L. Salin, J.
E. L. Arceneaux, and C. Tolbert. 1986. A Streptococcus
mutans superoxide dismutase that is active with either
manganese or iron as a cofactor. J. Biol. Chem. 261:9361-
9367.
34.McCord J. M., and I. Fridovich. 1968. The reduction of
cytochrome C by mild xanthine oxidase. J. Biol. Chem.
243:5753-5760.
35.McCord, J. M., and I. Fridovich. 1969. Superoxide dismutase:
an enzymatic function in erythrocuprein (hemocuprein). J.
Biol. Chem. 244:6049-6055.
36.Meier, B., D. Barra, F. Bossa, L. Calabrese, and G. Rotilio.
1982. Synthesis of either Fe- or Mn- superoxide dismutase
with an apparently identical protein moiety by an anaerobic
bacterium dependent on the metal supplied. J. Biol. Chem.
257:13977-13980.
37.Nakayama, K. 1990. The superoxide dismutase-encoding gene of
the obligately anaerobic bacterium Bacteroides gingivalis.
Gene 96:149-150.
38.Parker, M. W., and C. C. Blake. 1988. Crystal structure of
manganese superoxide dismutase from Bacillus
stearothermophilus at 2.4 A resolution. J. Mol. Biol.
199:649-661.
39.Parker, M. W., and C. C. F. Blake. 1988. Iron- and manganese-
containing superoxide dismutase can be distinguished by
analysis of their primary structures. FEBS Lett. 229:377-382.
40.Poyart, C., G. Quesne, S. Coulon, P. Berche, and P. T. Cuot.
1998. Identification of streptococci to species level by
sequencing the gene encoding the manganese- dependent
superoxide dismutase. J. Clin. Microbiol. 36:41-47.
41.Sakamoto, H., and D. Touati. 1984. Cloning of the iron
superoxide dismutase gene (sodB) in Escherichia coli K-12.
J. Bacteriol. 159:418-420.
42.Schmidt, M., B. Meier, and F. Parak. 1996. X-ray structure
of the cambialistic superoxide dismutase from
Propionibacterium shermanii active with Fe or Mn. J. Biol.
Inorg. Chem. 1:532-541.
43.Schnell, S., and H. M. Steinman. 1995. Function and
stationary-phase induction of periplasmic copper-zinc
superoxide dismutase and catalase/peroxidase in Caulobacter
crescentus. J. Bacteriol. 177:5924-5929.
44.Shenep, J. L. 2000. Viridans-group streptococcal
infections in immunocompromised hosts. Int. J. Antimicrob.
Agents 14:129-135.
45.St. John, G., and H. M. Steinman. 1996. Periplasmic copper-
Zinc superoxide dismutase of Legionella pneumophila: role in
stationary phase survival. J. Bacteriol. 178:1578-1584.
46.Stallings, W. C., T. B. Powers, K. A. Pattridge, J. A. Fee,
and M. L. Ludwig. 1983. Iron superoxide dismutase from
Escherichia coli at 3.1-A resolution: a structure unlike
that of copper/zinc protein a both monomer and dimmer
levels. Proc. Natl. Acad. Sci. USA. 80:3883-3888.
47.Steinman, H. M. 1982. in superoxide dismutase ( Oberly, L.
W., ed) Vol.1, pp.11-68, CRC Press, Inc., Boca Raton, FL
48.Takashi, I., M. Yoshinobu and T. Tetsuki. 1998. Molecular
cloning and nucleotide sequence of the superoxide dismutase
gene and characterization of its product from Bacillus
subtilis. J. Bacteriol. 180:3697-3703.
49.Teng, L. J., P. R. Heueh, Y. C. Chen, S. W. Ho, and K. T.
Luh. 1998. Antimicrobiol susceptibility of viridans group
streptococci in Taiwan with an emphasis in the high rates of
resistance to penicillin and macrolides in Streptococcus
oralis. J. Antimicrob. Chemother. 41:621-627.
50.Thomas, E. L., and K. A. Pera. 1983. Oxygen metabolism of
Streptococcus mutans: uptake of oxygen and release of
superoxide and hydrogen peroxide. J. Bacteriol. 154:1236-
1244.
51.Touati, D. 1983. Cloning and mapping of the manganese
superoxide dismutase gene (sodA) of Escherichia coli K-12.
J. Bacteriol. 155:1078-1087.
52.Vance, P. G., B. B. Keele, and K. V. Rajagopalan. 1972.
Superoxide dismutase from Streptococcus mutans. Isolation
and characterization of two forms of the enzyme. J. Biol.
Chem. 247:4782-4786.
53.Vriesema, A. J. M., J. Dankert, and S. A. J. Zaat. 2000. A
shift from oral to blood pH is a stimulus for adaptive gene
expression of Streptococcus gordonii CH1 and induces
protection against oxidative stress and enhanced bacterial
growth by expression of msrA. Infect. Immun. 68:1061-1068.
54.Whiley, R. A., and D. Beighton. 1998. Current classification
of the oral streptococci. Oral Microbiol Immunol. 13: 195-
216.
55.Whittaker, M. M., and J. W. Whittaker. 1998. A glutamate
bridge is essential for dimmer stability and metal
selectivity in manganese superoxide dismutase. J. Biol.Chem.
273: 22188-22193.
56.Yesilkaya, H., A. Kadioglu, N. Gingles, J. E. Alexander, T.
J. Mitchell, and P. W. Andrew. 2000. Role of manganese-
containing superoxide dismutase in oxdative stress and
virulence of Streptococcus pneumoniae. Infect. Immun.
68:2819-2826.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top