跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/13 18:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊婉婷
研究生(外文):Wan-Ting Chaung
論文名稱:FACTp140蛋白的定性
論文名稱(外文):Characterizationn of FACTp140
指導教授:呂勝春
指導教授(外文):Sheng-Chung Lee
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:分子醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:37
中文關鍵詞:FACTp140蛋白SSRP1蛋白
外文關鍵詞:FACTp140SSRP1FACT complexMcm3Mcm6
相關次數:
  • 被引用被引用:0
  • 點閱點閱:363
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
FACTp140在細胞中是與SSRP1形成異體單元蛋白錯合物(nuclear heterodimeric FACT complex),已知FACTp140-SSRP1是參與在細胞轉錄作用的延長過程(elongation of transcription)中的一個因子。已知FACTp140-SSRP1在yeast與frog之homologes會參與在DNA複製(DNA replication)的過程中。在本論文中製造了一株抗FACTp140的單株抗體,利用此單株抗體進行免疫染色,發現FACTp140在核內的分布除了均質的小點外,有部分的FACTp140會聚集在特定的區域中,且這些區域恰為DAPI淡染的部分。當細胞進入mitosis時,FACTp140會被排除在chromosome之外的細胞質中並均勻的分布。已知FACTp140與SSRP1會在細胞中結合並執行其功能,本論文更進一步定出SSRP1中1~205與FACTp140中477~633部分的胺基酸序列對其間的interaction是重要的。利用nuclear matrix的製備法,我發現大部分的FACTp140是屬於soluble fraction及chromatin fraction,只有少部分的FACTp140會在nuclear matrix的部分以點狀的方式分布。另外,利用此FACTp140的抗體所進行的免疫沉澱實驗中,除了已知的SSRP1外,更發現Mcm3以及Mcm6也會被沉澱出來。因為Mcm3和Mcm6都是參與在DNA複製始期的重要蛋白,所以推測哺乳類細胞核中的FACTp140可能也在此扮演了重要的角色。

Abstract
FACTp140 and SSRP1 form a nuclear heterodimeric FACT complex, which is a known chromatin-specific elongation factor required for transcription of chromatin templates (Orphanides et al., 1999). The homologues of FACT complex in yeast and frog, Spt16-Pob3 and DUF, have been implicated in DNA replication and transcrption (Wittmeyer et al., 1999; Okuhara et al., 1999; Mylynda and Tim, 2000). In this study, monoclonal antibodies specifically against FACTp140 were generated and used for Western blot analysis, indirect immunofluorescence, and immunoprecipitation experiments. Indirect immunofluorescence revealed that FACTp140 exhibited a finely grainy distribution throughout nucleoplasm of interphase nuclei and mostly excluded from heterochromatin. During mitosis, FACTp140 is apparently excluded from chromosome. Furthermore, in situ nuclear matrix isolation and indirect immunofluorescence showed most of FACTp140 was detergent-sensitive soluble form and/or associated with chromatin. Only a small fraction of FACTp140 is apparently associated with nuclear matrix. Using immunoprecipitation and mass spectrometry analysis, we identified SSRP1, Mcm3 and Mcm6 as FACTp140-interacting proteins. We further demonstrated amino acids 1~206 of SSRP1 and amino acids 470~633 of FACTp140 were responsible for the interactions between FACTp140 and SSRP1.

Table of contents
Abstract (Chinese) 7
Abstract (English) 8
Introduction 9
Materials and Methods 13
Plasmid constructs
Transformation and plasmid preparation
Antibody
Cell culture and transient transfection
Cell lysis, immunoprecipitation, and Western blot analysis
Protein sequencing
Cell fractionation
In situ nuclear matrix isolation and indirect immunofluorescence analysis
Results 19
Generation, characterization of monoclonal antibodies against FACTp140
Identification of FACTp140 containing multiprotein complex
Mapping the interaction domains between FACTp140 and SSRP1
Subcellular localization of FACTp140
Discussions 22
FACTp140 form complex with Mcm3 and Mcm6
Mapping the interaction domains between FACTp140 and SSRP1
Interrelationship of subcellular localization and functions of FACTp140
Concluding remarks 26
Reference 27
Figures 33
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.

Reference
Angus I.L. and William C. E. (1998) Structure and function in the nucleus. Science 280,547-553
Aparicio, O., O. Weinstein, and S. Bell. (1997) Components and dynamics of DNA replication complexes in Saccharomyces cerevisiae: redistribution of MCM proteins and cdc45 during S phase. Cell 91,59-69
Berezeney, R., Mortillaro, M.J., Ma, H., Wei, X., and Samarabandu, J. (1995) The nuclear matrix: a structure milieu for genomic function. Int. Rev. Cytol.1-65
Bidwell, J.P., van Wijnen, A.J., Fey, E.G., Dworetzky, S., Penman, S., Stein, J.L., Lian, J.B. & Stein, G.S. (1993) Proc. Natl. Acad. Sci. USA 90,3162-3166
Brewster, N.k., Johnston, G.C. & Singer, R.A. (1998) Characterization of the CP complex, an abundant dimmer of Cdc68 and Pob3 proteins that regulates yeast transcriptional activation and chromatin repression. J. Biol. Chem. 273,21972-21979
Buhrmester, H., von Kires, J.P. & Stratling, W.H. (1995) Biochemictry 34,4108-4177
Bustin, M.S., and Reeves, R. (1996) High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function. Prog. Nucl. Acid Res. Mol. Biol. 54, 35-100
Cairns, B. R., Y. Lorch, Y. Li, L. Lacomis, H. Erdjument-Bromage, P. Tempst, B. Laurent, and R. D. Kornberg. (1996) RSC, an essential, abundant chromatin-remodeling complex. Cell 87,1249-1260
Chang, J.P.J., thommes, P., and Blow, J.J. (1996) Trends Biochem. Sci. 21,102-106
Dickinson, L.A., Joh, T., Kohwi, Y. & Kohwi-Shigematsu, T. (1992) Cell 70,631-645
Formosa, T., and T. Nittis, (1999) Dna2 mutants reveal interactions with DNA polymerase α and Ctf4, a pol α accessory factor, and show that full DNA2 helicase activity is not essential for growth. Genetics 151,1459-1470
Gary S.S, Andre J.W., Janet L.S., Jane B.L., Shirwin P., and Sandra Mc. (1998) Interrelationships of nuclear structure and transcriptional control: functional consequences of being in the right place at right time. J. Cell.Biochem. 70,200-212
de Jong L, Grande M.A., Mattern K.A., Schul W., van Driel R. (1996) Nuclear domains involved in RNA synthesis, RNA processing and replication. Critical Reviews in Eukaryotic Gene Expression 6:215-246
Gunster et al. (1997) Mol. Cell. Biol. 17:2326
Guo, B., Odgren, P.R., van Wijnen, A.J., Last, T.J., Nickerson, J., Penman, S., Lian, J.B., Stein, J.L. & Stein, G.S. (1995) Proc. Natl. Acad.Sci. USA 92,10526-10530
Hartzog, G.A., Wada, T., Handa, H., and Winston, F. (1998) Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Genes. Dev. 12,357-369
Ishimi, Y. (1997) A DNA helicase activity is associated with an MCM4,-6 and —7 complex. J. Biol. Chem. 272,24508-24513
Ishimi, Y., S. Ichinose, A. Omori, K. Sato, and H. Kimura. (1996) MCM protein complex is associated with histone H3. J. Biol. Chem. 271,24115-24122
Ito, T., M. Buler, M. J. Pazin, R. Kobayashi, and J. T. Kadonaga. (1997) ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90, 145-155
LeRoy, G., G. Orphanides, W. s. Lane, and D. Reinberg. (1998) Requirment of RSF and FACT for transcription of chromatin templates in vitro. Science 282,1900-1904
Kadonaga, J.T. (1998) Eukaryotic transcription: an interlaced network of transcription factors and chromatin-modifying machines. Cell 92, 307-313
Kearsey, S.E., Maiorano, D., Holmes, E. C., and Tudorov, I. T. (1996) Bio Essays 18,183-190
Kearsey, S.E., and K. Labib. (1998) MCM proteins: evolution, properties, and role in DNA replication. Biochem. Biophys. Acta 1398,113-136
Koonin, E.V. (1993) A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPase including MCM proteins involved in the initiation of eukaryotic DNA replication. Nucleic Acids Res. 21,2541-2547
Kwon, H., A.N. Imbalzano, P. Khavari, R. E. Kingston, and M. R. Green. (1994) Nucleosome disruption and enhancemant of activator binding by a human SWI/SNF complex. Nature 370,477-481
Lamond A.I., and Carmo-Fonseca M. (1993) Trends Cell Biol. 3:198
Malone, E.A., Clark, C.D., Chiang, A. & Winstone, F. (1991) Mutations in SPT16/CDC68 supress cis- and trans- acting mutations that affect promoter function in Saccharomyces cerevisiae. Mol. Cell. Biol. 11,5710-5717
Mylynda B. S. and Tim Formosa (2000) Pob3 is required for both transcription and replication in the Saccharomyces cerevisiae Genetics 155,1593-1606
Okuhara, K., K. Ohata, H. Seo, M. Shioda, T. Yamada et al.,
(1999) A DNA unwinding factor involved in DNA replication in cell-free extracts of Xenopus eggs. Curr. Biol. 9,341-350
Orphanides, G., Lagrange, T., and Renbreg, D. (1996). The general transcription factors of RNA polymerase II. Genes Dev 10, 2657-2683
Orphanides, G., G. LeRoy, C.H. change, D.S. Luse, and D.Reinger. (1998) FACT, a factor that faci;litates transcription elongation through nucleosomes. Cell 92,105-116
Orphanide, G., W.H. Wu, W.S. Lane, M. Hampsey, and D. Reinberg. (1999) The chromatin-specific transcription elongation factor FACT compries human SPT16 and SSRP1 proteins. Nature 400,284-288
Prendergrast, J.A., L.E. Murray, A. Rowley, D.R. Carruthers, R.A. Singer, and G.C. Johnston. (1990) Size selection identifies new genes that regulate Saccharomyces cerevisiae cell proliferation. Genetics 124,81-90
Rowley, A., Singer, R.A. & Johnston, G.C. (1991) CDC68, a yeast gene that affects regulation of cell proliferation and transcription, encodes a protein with a highly acidic carboxyl terminus. Mol. Cell. Biol. 11,5718-5726
Simpson, R. T., F. Thoma, and J.M. Brubaker (1985) Chromatin reconstituted from tandemly repeated cloned DNA fragments and core histones: A model system for study of higher order structure. Cell 42,799-808
Steger, D.J., A. Eberharter, S. John, P.A. Grant, and J.L. workman. (1998) Purified histone acetyltransferase complexes stimulate HIV-1 transcription from preassembled nucleosomal arrays. Proc. Natl. Acad. Sci. 95,12924-12929
Struhl, K. (1998) Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12, 599-606
Suhul W., Luitzen de J., and Roel van D. (1998) Nuclear neighbours: the spatial and functional organization of genes and nuclear domains. J. Cel. Biol. 70:159-171
Tsukiyama, T. and C. Wu. (1995) Purification and properties of an ATP dependent nucleosome remodeling factor. Cell 83, 1011-1020
von Kires, J.P., Buhrmester, H. & Stratling, W.H. (1991) Cell 64,123-135
Vettese-Dadey, M., P.A. Grant, T.R. Hebbes, C. Crane-Robinson, C.D. Allis, and J.L. workman. (1996) Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO J. 15,2508-2518
Wada, T., Takagi, T., Yamaguchi, Y., Ferdous, A., Imai, T., Hirose, S., Sugimoto,S., Yano, K., Hartzog, G.A., Winston, F., et al. (1998) DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev. 12,343-356
Wada, T., & Orphanides, G et al., (2000) FACT relieves DSIF/NELF-mediated inhibition of transcriptional elongation and reveals functional differences between P-TEFb and TFIIH. Mol. Cell. 5,1067-1072
Wang, L., L. Liu, and S. L. Berger. (1998) Critical residues for histone acetylation by Gcn5, functioning in Ada and SAGA complex, are also required for transcriptional function in vivo. Genes Dev. 12, 640-653
Winston, F., and M.Carlson, (1992) Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends. Genet. 8,387-391
Wittmeyer, J., and T. Formosa, (1995) Identifying DNA replication complex components using protein affinity chromatography. Methods Ezymol. 262,415-430
Wittmeyer, J., and T. Formosa, (1997) The Saccharomyces cerevisiae DNA polymerse α catalytic subunit interacts with Cdc68/Spt16 and with Pob3, a protein similar to an HMG-like protein. Mol. Cell. Biol. 17,4178-4179
Wittmeyer, J., L. Joss, and T. Formosa. (1999) Spt16 and Pob3 of Saccharomyces cerevisiae form an essential, aboundant heterodimer that is nuclear, chromatin-associated, and copurifies with DNA polymerase α. Biochemistry 38,8961-8971
Workman, J. L. & Kingston, R. E. (1998) Alternation of nucleosome structure as mechanism of transcriptional regulation. Annu. Rev. Biochem. 67, 545-579
Wouter S., Luitzen J., and Roel D. (1998) Nuclear neighbour: the spatial and functional organization of genes and nuclear domains. J. Cell. Biochem. 70,159-171
Xu, Q., Singer, R.A. & Johnston, G.C. (1993) The Saccharomyces cerevisiae Cdc68 transcription activator is antagonized by San1, a protein implicated in transcriptional silencing. Mol. Cell. Biol. 13,7533-7565
Xu, Q., Singer, R.A. & Johnston, G.C. (1995) SugI modulates yeast transcription activation by Cdc68. Mol. Cell. Biol. 15,6025-6035
Yankulov K., Todorov I., Romanowski P., Licatalosi D., Cilli K., McCracken S., Laskey R., and Bentley D.L. (1999) MCM proteins are associated with RNA polymerase II holozyme. Mol. Cel. Biol. 19,6154-6163

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文