跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/02/29 15:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃純芳
研究生(外文):Chun-Fang Huang
論文名稱:酵母菌腺嘌呤核二磷酸核醣化因子相似蛋白的功能特性探討
論文名稱(外文):Functional Characterization of ADP-ribosylation Factor-Like Proteins in Saccharomyces cerevisiae
指導教授:李芳仁
指導教授(外文):Fang-Jen S. Lee
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:分子醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:107
中文關鍵詞:腺嘌呤核二磷酸核醣化因子腺嘌呤核二磷酸核醣化因子相似蛋白囊泡運輸高基氏體液泡麵包酵母內質網
外文關鍵詞:ADP-ribosylation factorARFARF-like proteinsARLvesicular traffickingGolgi complexvacuoleSaccharomyces cerevisiaeendoplasmic reticulum
相關次數:
  • 被引用被引用:0
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
腺嘌呤核二磷酸核醣化因子(ADP-ribosylation factor, ARF)為Ras致癌基因蛋白家族的一支,屬於鳥糞嘌呤核三磷酸結合蛋白的一種。在各種不同的真核生物都有ARF家族成員的分布,負責著細胞內的囊泡運輸、磷脂的活化、參與磷脂三激脢的訊息調控等等的功能。ARF家族成員可分為ARF與ARF-相似蛋白(ARL)兩大類。目前雖然已知有許多ARL的存在但對其功能卻仍幾乎是一無所知。本文利用酵母菌為模式研究ARL蛋白在細胞中所扮演的角色。酵母菌有三個ARF基因,分別為yARF1、yARF2、yARF3。由分析酵母菌基因序列得知另有兩個ARL基因, yARL1與yARL3。實驗中我們分別將yARL1與yARL3基因從酵母菌中剔除,觀察缺少該基因是否對酵母菌的生長或囊泡運輸作用造成影響。同時利用梯度離心法與螢光染色法探討ARL蛋白在細胞內的分布。並利用酵母菌雙雜合篩選法,試圖找出與蛋白直接作用的蛋白質。研究結果發現yARL1蛋白分布在高基氏體上,且會影響特定的高基氏體到液泡的囊泡運輸。同時也發現可與一個被認為與囊泡運輸相關的Imh1蛋白作用。當我們將ARL3基因從酵母菌剔除,會造成酵母菌對低溫敏感的性狀。在低溫下,缺少ARL3的酵母菌株,其液泡內酵素的運輸與細胞的胞飲作用皆受到影響,同時液泡的型態亦發生變化。在尋找與蛋白作用的蛋白質的過程中,我們找到了幾個目前功能仍未知的蛋白。在此,我們發現兩個酵母菌的ARL蛋白確實會參與囊泡運輸,進一步分析與探討與其作用的蛋白質將會使我們對囊泡運輸的分子機轉有更深一層的了解。

ADP-ribosylation factors (ARFs) are highly conserved small GTP-binding proteins that enhance the ADP-ribosyltransferase activity of cholera toxin and have an important role in vesicular transport. Several cDNAs for ARF-like proteins (ARLs) have been cloned from different organisms but the biological functions of ARLs remain unknown. In this report, two ARL proteins of yeast Saccharomyces cerevisiae were characterized. Yeast ARL1 encodes a protein that is structurally related to human, rat, and Drosophila ARL1 proteins. Unlike Drosophila ARL1, yeast ARL1 was not essential for cell viability. Deletion of ARL1 gene from yeast affected the transport of ALP but not CPY from the Golgi toward the vacuole. On sucrose gradient subcellular fractionation, yARL1p was localized to the soluble fraction. Immunostaining revealed that yARL1 localized to the late-Golgi com- partment. Yeast ARL3 gene encodes a protein that is structurally related to the mammalian ARF-like protein ARP. yARL3 was not essential for cell viability, but disruption of yARL3 resulted in cold-sensitive cell growth. At the nonpermissive temperature, both transport pathways of vacuolar hydrolase biosynthesis and endocytosis were slowed and the vacuole of arl3 yeast fragmented into smaller compartments. On subcellular fractionation, yARL3p was detected in the soluble fraction but not in the plasma membrane as its mammalian homologue, ARP. Immunofluorescence analysis revealed that yARL3p was associated in part with the ER-nuclear envelope when overexpressed. Yeast two-hybrid analysis identified several ARL interaction partners. yARL1p interacted with the GRIP domain of Imh1p, which is a protein implicated to be involved in the transport in the Golgi. One of the proteins that interact with yARL3p is a Rho-GAP, Bem2p. However, most of the identified yARL3p interacting proteins were of unknown function and requires further characterization of their function. These results indicated that yARL1p as well as yARL3p might involved in novel vesicular transport pathways and the studies of yeast ARLs offers opportunity of dissecting the mechanism of vesicular transport in eukaryotic cells.

中文摘要 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧1
Abstract ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧2
Abbreviations ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧3
Introduction ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧5
Materials and Methods ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧19
Results ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧35
I. Characterization of yARL1 35
II. Characterization of yARL3 40
III. Identification of yeast ARL interacting proteins47
Discussion ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧51
Tables ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧57
Table 1 Yeast strains used in this study 57
Table 2Primers used in this study 58
Table 3.Antibodies used in this study60
Table 4.Comparison of deduced amino acid sequences of yeast ARL1 and those of ARFs and other ARLs61
Table 5.Comparison of deduced amino acid sequences of yeast ARL3 and those of ARFs and other ARLs62
Table 6.Genes that interact with yARL3 from the two-hybrid screening 63
Table 7.Two-hybrid interaction of yeast ARFs and ARLs with Bem2, YEL023C, YJL105W, STB6, and RPM264
Figures‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧65
Figure 1.Structure of small GTP-binding protein.65
Figure 2.Structure of ARF1. 66
Figure 3.The Sec7 domain 66
Figure 4.ARF-GAP sequence and mechanism of GTP hydrolysis68
Figure 5.Model of ARF function.69
Figure 6.Genetic disruption of yeast ARL1 gene. 70
Figure 7.Genetic disruption of yeast ARL3 gene.71
Figure 8.Nucleotide sequence and deduced amino acid sequence of yARL1 open reading frame.72
Figure 9.Alignment of deduced amino acid sequences of ARFs and ARLs from several organisms.73
Figure 10.Specific immunoreactivity and sensitivity of antibody against yARL1.74
Figure 11.Detection of yARL1p in yeast by western blotting.75
Figure 12.yARL1p is myristoylated in vitro and in vivo.76
Figure 13.Transport of ALP but not CPY is affected in arl1 mutant.77
Figure 14.Subcellular fractionation to localize yARL1 protein.78
Figure 15.yARL1p distributes in Golgi-like structures but does not colocalize with Emp47p nor Sec7 79
Figure 16.yARL1p colocalizes with Sft2p80
Figure 17.Overexpression of yARL1(Q72L) in yeast results in large aggregates 81
Figure 18.Nucleotide sequence and deduced amino acid sequence of yARL3 open reading frame.82
Figure 19.Alignment of deduced amino acid sequences of ARFs and ARLs from several organisms.83
Figure 20.Deletion of yARL3 results in cold sensitivity. 84
Figure 21.Specific immunoreactivity and sensitivity of antibody against yARL3.85
Figure 22.Detection of endogenous yARL3p from yeast.86
Figure 23.Transport of CPY is not affected in arl3 mutant 87
Figure 24.Transport of ALP is delayed in arl3 mutant at none- permissive temperature88
Figure 25.Accumulation of LY is delayed in arl3 mutant. 89
Figure 26.Subcellular fractionation to localize yARL3 protein.90
Figure 27.yARL3 protein localized to the perinuclear region.91
Figure 28.yARL3(T31N) forms small aggregates in yeast.92
Figure 29.Interaction of ARLs or ARFs with potential interacting proteins in the two-hybrid system. 93
Figure 30.Interaction of ARLs or ARFs with Imh1.94
References‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧95

Amor, J. C., Harrison, D. H., Kahn, R. A. and Ringe, D. (1994). Structure of the human ADP-ribosylation factor 1 complexed with GDP. Nature 372, 704-708.
Antonny, B., Beraud-Dufour, S., Chardin, P. and Chabre, M. (1997a). N-terminal hydrophobic residues of the G-protein ADP-ribosylation factor-1 insert into membrane phospholipids upon GDP to GTP exchange. Biochemistry 36, 4675-4684.
Antonny, B., Huber, I., Paris, S., Chabre, M. and Cassel, D. (1997b). Activation of ADP-ribosylation factor 1 GTPase-activating protein by phosphatidylcholine-derived diacylglycerols. J. Biol. Chem. 272, 30848-30851.
Balch, W. E., Kahn, R. A. and Schwaninger, R. (1992). ADP-ribosylation factor is required for vesicular trafficking between the endoplasmic reticulum and the cis-Golgi compartment. J. Biol. Chem. 267, 13053-13061.
Bannykh, S. I., Nishimura, N. and Balch, W. E. (1998). Getting into the Golgi. Trends Cell Biol. 8, 21-25.Barlowe, C. (1998). COPII and selective export from the endoplasmic reticulum. Biochim. Biophys. Acta 1404, 67-76.
Bensen, E. S., Yeung, B. G. and Payne, G. S. (2001). Ric1p and the ypt6p gtpase function in a common pathway required for localization of trans-golgi network membrane proteins. Mol Biol Cell 12, 13-26.
Betz, S. F., Schnuchel, A., Wang, H., Olejniczak, E. T., Meadows, R. P., Lipsky, B. P., Harris, E. A., Staunton, D. E. and Fesik, S. W. (1998). Solution structure of the cytohesin-1 (B2-1) Sec7 domain and its interaction with the GTPase ADP ribosylation factor 1. Proc. Natl. Acad. Sci. U S A 95, 7909-7914.
Boman, A. L., Kuai, J., Zhu, X., Chen, J., Kuriyama, R. and Kahn, R. A. (1999). Arf proteins bind to mitotic kinesin-like protein 1 (MKLP1) in a GTP-dependent fashion. Cell Motil Cytoskeleton 44, 119-132.
Boman, A. L., Zhang, C., Zhu, X. and Kahn, R. A. (2000). A family of ADP-ribosylation factor effectors that can alter membrane transport through the trans-Golgi. Mol. Biol. Cell 11, 1241-1255.
Bomsel, M. and Mostov, K. (1992). Role of heterotrimeric G proteins in membrane traffic. Mol Biol Cell 3, 1317-1328.
Boshans, R. L., Szanto, S., van Aelst, L. and D'Souza-Schorey, C. (2000). ADP-ribosylation factor 6 regulates actin cytoskeleton remodeling in coordination with Rac1 and RhoA. Mol. Cell Biol. 20, 3685-3694.
Bourne, H. R., Sanders, D. A. and McCormick, F. (1991). The GTPase superfamily: conserved structure and molecular mechanism. Nature 349, 117-127.
Brown, H. A., Gutowski, S., Moomaw, C. R., Slaughter, C. and Sternweis, P. C. (1993). ADP-ribosylation factor, a small GTP-dependent regulatory protein, stimulates phospholipase D activity. Cell 75, 1137-1144.
Brown, M. T., Andrade, J., Radhakrishna, H., Donaldson, J. G., Cooper, J. A. and Randazzo, P. A. (1998). ASAP1, a phospholipid-dependent arf GTPase-activating protein that associates with and is phosphorylated by Src. Mol. Cell Biol. 18, 7038-7051.
Cavenagh, M. M., Breiner, M., Schurmann, A., Rosenwald, A. G., Terui, T., Zhang, C., Randazzo, P. A., Adams, M., Joost, H. G. and Kahn, R. A. (1994). ADP-ribosylation factor (ARF)-like 3, a new member of the ARF family of GTP-binding proteins cloned from human and rat tissues. J. Biol. Chem. 269, 18937-18942.
Chardin, P., Paris, S., Antonny, B., Robineau, S., Beraud-Dufour, S., Jackson, C. L. and Chabre, M. (1996). A human exchange factor for ARF contains Sec7- and pleckstrin-homology domains. Nature 384, 481-484.
Chavrier, P. and Goud, B. (1999). The role of ARF and Rab GTPases in membrane transport. Curr. Opin. Cell Biol. 11, 466-475.
Cherfils, J., Menetrey, J., Mathieu, M., Le Bras, G., Robineau, S., Beraud-Dufour, S., Antonny, B. and Chardin, P. (1998). Structure of the Sec7 domain of the Arf exchange factor ARNO. Nature 392, 101-105.
Clark, J., Moore, L., Krasinskas, A., Way, J., Battey, J., Tamkun, J. and Kahn, R. A. (1993). Selective amplification of additional members of the ADP-ribosylation factor (ARF) family: cloning of additional human and Drosophila ARF-like genes. Proc. Natl. Acad. Sci. USA 90, 8952-8956.
Cockcroft, S., Thomas, G. M., Fensome, A., Geny, B., Cunningham, E., Gout, I., Hiles, I., Totty, N. F., Truong, O. and Hsuan, J. J. (1994).Phospholipase D: a downstream effector of ARF in granulocytes. Science 263, 523-526.
Coleman, D. E., Berghuis, A. M., Lee, E., Linder, M. E., Gilman, A. G. and Sprang, S. R. (1994). Structures of active conformations of Gi alpha 1 and the mechanism of GTP hydrolysis. Science 265, 1405-1412.
Cosson, P. and Letourneur, F. (1997). Coatomer (COPI)-coated vesicles: role in intracellular transport and protein sorting. Curr. Opin. Cell Biol. 9, 484-487.
Cowles, C. R., Snyder, W. B., Burd, C. G. and Emr, S. D. (1997). Novel Golgi to vacuole delivery pathway in yeast: identification of a sorting determinant and required transport component. EMBO J. 16, 2769-2782.
Cukierman, E., Huber, I., Rotman, M. and Cassel, D. (1995). The ARF1 GTPase-activating protein: zinc finger motif and Golgi complex localization. Science 270, 1999-2002.
D'Souza-Schorey, C., Boshans, R. L., McDonough, M., Stahl, P. D. and Van Aelst, L. (1997). A role for POR1, a Rac1-interacting protein, in ARF6-mediated cytoskeletal rearrangements. EMBO J. 16, 5445-5454.
D'Souza-Schorey, C., Li, G., Colombo, M. I. and Stahl, P. D. (1995). A regulatory role for ARF6 in receptor-mediated endocytosis. Science 267, 1175-1178.
Dascher, C. and Balch, W. E. (1994). Dominant inhibitory mutants of ARF1 block endoplasmic reticulum to Golgi transport and trigger disassembly of the Golgi apparatus. J. Biol. Chem. 269, 1437-1448.
Dell'Angelica, E. C., Puertollano, R., Mullins, C., Aguilar, R. C., Vargas, J. D., Hartnell, L. M. and Bonifacino, J. S. (2000). GGAs: a family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. J. Cell Biol. 149, 81-94.
Donaldson, J. G., Cassel, D., Kahn, R. A. and Klausner, R. D. (1992). ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein beta-COP to Golgi membranes. Proc. Natl. Acad. Sci. USA 89, 6408-6412.
Donaldson, J. G. and Jackson, C. L. (2000). Regulators and effectors of the ARF GTPases. Curr. Opin. Cell Biol. 12, 475-482.
Dukic, V., Egerton, M., Elguindi, I., Raths, S., Singer, B. and Riezman, H. (1991). Yeast endocytosis assays. Methods Enzymol. 194, 697-710.
Eugster, A., Frigerio, G., Dale, M. and Duden, R. (2000). COP I domains required for coatomer integrity, and novel interactions with ARF and ARF-GAP. EMBO J. 19, 3905-3917.
Ferro-Novick, S. and Novick, P. (1993). The role of GTP-binding proteins in transport along the exocytic pathway. Annu Rev Cell Biol 9, 575-599.
Fleming, J. A., Vega, L. R. and Solomon, F. (2000). Function of tubulin binding proteins in vivo. Genetics 156, 69-80.Franco, M., Paris, S. and Chabre, M. (1995). The small G-protein ARF1GDP binds to the Gt beta gamma subunit of transducin, but not to Gt alpha GDP-Gt beta gamma. FEBS Lett. 362, 286-290.
Franco, M., Peters, P. J., Boretto, J., van Donselaar, E., Neri, A., D'Souza-Schorey, C. and Chavrier, P. (1999). EFA6, a sec7 domain-containing exchange factor for ARF6, coordinates membrane recycling and actin cytoskeleton organization. EMBO J.. 18, 1480-1491.
Frank, S. R., Hatfield, J. C. and Casanova, J. E. (1998). Remodeling of the actin cytoskeleton is coordinately regulated by protein kinase C and the ADP-ribosylation factor nucleotide exchange factor ARNO. Mol. Biol. Cell 9, 3133-3146.
Garcia-Ranea, J. A. and Valencia, A. (1998). Distribution and functional diversification of the ras superfamily in Saccharomyces cerevisiae. FEBS Lett 434, 219-225.
Gaynor, E. C., Chen, C. Y., Emr, S. D. and Graham, T. R. (1998). ARF is required for maintenance of yeast Golgi and endosome structure and function. Mol. Biol. Cell 9, 653-670.
Goldberg, J. (1998). Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell 95, 237-248.Goldberg, J. (1999). Structural and functional analysis of the ARF1-ARFGAP complex reveals a role for coatomer in GTP hydrolysis. Cell 96, 893-902.
Golemis, E. A. and Khazak, V. (1997). Alternative yeast two-hybrid systems.The interaction trap and interaction mating. Methods Mol Biol 63, 197-218.
Harlow, E., and Lane, D. (1988). Antibodies: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor laboratory.
Herrmann, C., Martin, G. A. and Wittinghofer, A. (1995). Quantitative analysis of the complex between p21ras and the Ras-binding domain of the human Raf-1 protein kinase. J. Biol. Chem. 270, 2901-2905.
Hirst, J., Lui, W. W., Bright, N. A., Totty, N., Seaman, M. N. and Robinson, M. S. (2000). A family of proteins with gamma-adaptin and VHS domains that facilitate trafficking between the trans-Golgi network and the vacuole/lysosome. J. Cell Biol. 149, 67-80.
Hirst, J. and Robinson, M. S. (1998). Clathrin and adaptors. Biochim Biophys Acta 1404, 173-193.
Honda, A., Nogami, M., Yokozeki, T., Yamazaki, M., Nakamura, H., Watanabe, H., Kawamoto, K., Nakayama, K., Morris, A. J., Frohman, M. A. (1999). Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 99, 521-532.
Hong, J. X., Lee, F. J., Patton, W. A., Lin, C. Y., Moss, J. and Vaughan, M. (1998). Phospholipid- and GTP-dependent activation of cholera toxin and phospholipase D by human ADP-ribosylation factor-like protein 1 (HARL1). J. Biol. Chem. 273, 15872-15876.
Huber, I., Cukierman, E., Rotman, M., Aoe, T., Hsu, V. W. and Cassel, D. (1998). Requirement for both the amino-terminal catalytic domain and a noncatalytic domain for in vivo activity of ADP-ribosylation factor GTPase-activating protein. J. Biol. Chem. 273, 24786-24791.
Ingley, E., Williams, J. H., Walker, C. E., Tsai, S., Colley, S., Sayer, M. S., Tilbrook, P. A., Sarna, M., Beaumont, J. G. and Klinken, S. P. (1999). A novel ADP-ribosylation like factor (ARL-6), interacts with the protein-conducting channel SEC61beta subunit. FEBS Lett. 459, 69-74.
Jackson, C. L. and Casanova, J. E. (2000). Turning on ARF: the Sec7 family ofguanine-nucleotide-exchange factors. Trends Cell Biol 10, 60-67.
Jackson, T. R., Brown, F. D., Nie, Z., Miura, K., Foroni, L., Sun, J., Hsu, V. W., Donaldson, J. G. and Randazzo, P. A. (2000). ACAPs are ARF6 GTPase-activating proteins that function in the cell periphery. J Cell Biol 151, 627-638.
Jacobs, S., Schilf, C., Fliegert, F., Koling, S., Weber, Y., Schurmann, A. and Joost, H. G. (1999). ADP-ribosylation factor (ARF)-like 4, 6, and 7 represent a subgroup of the ARF family characterization by rapid nucleotide exchange and a nuclear localization signal. FEBS Lett. 456, 384-388.
Jacobs, S., Schurmann, A., Becker, W., Bockers, T. M., Copeland, N. G., Jenkins, N. A. and Joost, H. G. (1998). The mouse ADP-ribosylation factor-like 4 gene: two separate promoters direct specific transcription in tissues and testicular germ cell. Biochem. J. 335, 259-265.
Kahn, R. A., Kern, F. G., Clark, J., Gelmann, E. P. and Rulka, C. (1991). Human ADP-ribosylation factors. A functionally conserved family of GTP-binding proteins. J. Biol. Chem. 266, 2606-2614.
Kahn, R. A., Randazzo, P., Serafini, T., Weiss, O., Rulka, C., Clark, J., Amherdt, M., Roller, P., Orci, L. and Rothman, J. E. (1992). The amino terminus of ADP-ribosylation factor (ARF) is a critical determinant of ARF activities and is a potent and specific inhibitor of protein transport. J. Biol. Chem. 267, 13039-13046.
Kahn, R. A., Yucel, J. K. and Malhotra, V. (1993). ARF signaling: a potential role for phospholipase D in membrane traffic. Cell 75, 1045-1048.Kanoh, H., Williger, B. T. and Exton, J. H. (1997). Arfaptin 1, a putative cytosolic target protein of ADP-ribosylation factor, is recruited to Golgi membranes. J. Biol. Chem. 272, 5421-5429.
Kirchhausen, T. (1999). Adaptors for clathrin-mediated traffic. Annu. Rev. Cell Dev. Biol. 15, 705-732.
Kjeldgaard, M., Nyborg, J. and Clark, B. F. (1996). The GTP binding motif: variations on a theme. FASEB J. 10, 1347-1368.
Kjer-Nielsen, L., Teasdale, R. D., van Vliet, C. and Gleeson, P. A. (1999). A novel Golgi-localisation domain shared by a class of coiled-coil peripheral membrane proteins. Curr Biol 9, 385-388.
Klausner, R. D., Donaldson, J. G. and Lippincott-Schwartz, J. (1992). Brefeldin A: insights into the control of membrane traffic and organelle structure. J Cell Biol 116, 1071-1080.
Lee, F. J., Moss, J. and Vaughan, M. (1992). Human and Giardia ADP-ribosylation factors (ARFs) complement ARF function in Saccharomyces cerevisiae. J. Biol. Chem. 267, 24441-24445.
Lee, F. J., Stevens, L. A., Kao, Y. L., Moss, J. and Vaughan, M. (1994). Characterization of a glucose-repressible ADP-ribosylation factor 3 (ARF3) from Saccharomyces cerevisiae. J. Biol. Chem. 269, 20931-20937.
Lin, C. Y., Huang, P. H., Liao, W. L., Cheng, H. J., Huang, C. F., Kuo, J. C., Patton, W. A., Massenburg, D., Moss, J. and Lee, F. J. (2000). ARL4, an ARF-like protein that is developmentally regulated and localized to nuclei and nucleoli. J. Biol. Chem. 275, 37815-37823.
Lippincott-Schwartz, J., Cole, N. B. and Donaldson, J. G. (1998). Building a secretory apparatus: role of ARF1/COPI in Golgi biogenesis and maintenance. Histochem. Cell. Biol. 109, 449-462.
Lowe, M. and Kreis, T. E. (1998). Regulation of membrane traffic in animal cells by COPI. Biochim. Biophys. Acta 1404, 53-66.
Lowe, S. L., Wong, S. H. and Hong, W. (1996). The mammalian ARF-like protein 1 (Arl1) is associated with the Golgi complex. J. Cell Sci. 109, 209-220.
Mittal, R., Ahmadian, M. R., Goody, R. S. and Wittinghofer, A. (1996). Formation of a transition-state analog of the Ras GTPase reaction by Ras-GDP, tetrafluoroaluminate, and GTPase-activating proteins. Science 273, 115-117.
Moss, J. and Vaughan, M. (1995). Structure and function of ARF proteins: activators of cholera toxin and critical components of intracellular vesicular transport processes. J. Biol. Chem. 270, 12327-12330.
Moss, J. and Vaughan, M. (1998). Molecules in the ARF orbit. J. Biol. Chem. 273, 21431-21434.
Mossessova, E., Gulbis, J. M. and Goldberg, J. (1998). Structure of the guanine nucleotide exchange factor Sec7 domain of human arno and analysis of the interaction with ARF GTPase. Cell 92, 415-423.
Munro, S. and Nichols, B. J. (1999). The GRIP domain - a novel Golgi-targeting domain found in several coiled-coil proteins. Curr. Biol. 9, 377-380.
Nagel, W., Schilcher, P., Zeitlmann, L. and Kolanus, W. (1998). The PH domain and the polybasic c domain of cytohesin-1 cooperate specifically in plasma membrane association and cellular function. Mol Biol Cell 9, 1981-1994.
Otto-Bruc, A., Antonny, B., Vuong, T. M., Chardin, P. and Chabre, M. (1993). Interaction between the retinal cyclic GMP phosphodiesterase inhibitor and transducin. Kinetics and affinity studies. Biochemistry 32, 8636-8645.
Pacheco-Rodriguez, G., Meacci, E., Vitale, N., Moss, J. and Vaughan, M. (1998). Guanine nucleotide exchange on ADP-ribosylation factors catalyzed by cytohesin-1 and its Sec7 domain. J. Biol. Chem. 273, 26543-26548.
Paris, S., Beraud-Dufour, S., Robineau, S., Bigay, J., Antonny, B., Chabre, M. and Chardin, P. (1997). Role of protein-phospholipid interactions in the activation of ARF1 by the guanine nucleotide exchange factor ARNO. J. Biol. Chem. 272, 22221-22226.
Peters, P. J., Hsu, V. W., Ooi, C. E., Finazzi, D., Teal, S. B., Oorschot, V., Donaldson, J. G. and Klausner, R. D. (1995). Overexpression of wild-type and mutant ARF1 and ARF6: distinct perturbations of nonoverlapping membrane compartments. J. Cell Biol. 128, 1003-1017.
Peyroche, A., Antonny, B., Robineau, S., Acker, J., Cherfils, J. and Jackson, C. L. (1999). Brefeldin A acts to stabilize an abortive ARF-GDP-Sec7 domain protein complex: involvement of specific residues of the Sec7 domain. Mol. Cell 3, 275-285.
Premont, R. T., Claing, A., Vitale, N., Freeman, J. L., Pitcher, J. A., Patton, W. A., Moss, J., Vaughan, M. and Lefkowitz, R. J. (1998). beta2-Adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein. Proc. Natl. Acad. Sci. USA 95, 14082-14087.
Price, S. R., Welsh, C. F., Haun, R. S., Stanley, S. J., Moss, J. and Vaughan, M. (1992). Effects of phospholipid and GTP on recombinant ADP-ribosylation factors (ARFs). Molecular basis for differences in requirements for activity of mammalian ARFs. J. Biol. Chem. 267, 17766-17772.
Radhakrishna, H., Al-Awar, O., Khachikian, Z. and Donaldson, J. G. (1999). ARF6 requirement for Rac ruffling suggests a role for membrane trafficking in cortical actin rearrangements. J. Cell Sci. 112, 855-866.
Radhakrishna, H., Klausner, R. D. and Donaldson, J. G. (1996). Aluminum fluoride stimulates surface protrusions in cells overexpressing the ARF6 GTPase. J. Cell Biol. 134, 935-947.
Rittinger, K., Walker, P. A., Eccleston, J. F., Nurmahomed, K., Owen, D., Laue, E., Gamblin, S. J. and Smerdon, S. J. (1997a). Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP. Nature 388, 693-697.
Rittinger, K., Walker, P. A., Eccleston, J. F., Smerdon, S. J. and Gamblin, S. J. (1997b). Structure at 1.65 A of RhoA and its GTPase-activating protein in complex with a transition-state analogue. Nature 389, 758-762.
Rose, M. D., Misra, L. M. and Vogel, J. P. (1989). KAR2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene. Cell 57, 1211-1221.
Rossanese, O. W., Reinke, C. A., Bevis, B. J., Hammond, A. T., Sears, I. B., O'Connor, J. and Glick, B. S. (2001). A role for actin, Cdc1p, and Myo2p in the inheritance of late Golgi elements in Saccharomyces cerevisiae. J. Cell Biol. 153, 47-62.
Rossanese, O. W., Soderholm, J., Bevis, B. J., Sears, I. B., O'Connor, J., Williamson, E. K. and Glick, B. S. (1999). Golgi structure correlates with transitional endoplasmic reticulum organization in Pichia pastoris and Saccharomyces cerevisiae. J. Cell Biol. 145, 69-81.
Roth, M. G. (1999a). Lipid regulators of membrane traffic through the Golgi complex. Trends Cell Biol. 9, 174-179.
Roth, M. G. (1999b). Snapshots of ARF1: implications for mechanisms of activation and inactivation. Cell 97, 149-152
Rothman, J. E. and Orci, L. (1996). Budding vesicles in living cells. Sci. Am. 274, 70-75.
Rothstein, R. J. (1983). One-step gene disruption in yeast. Methods Enzymol 101, 202-211.
Sambrook, J. F., E. F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor laboratory.
Sata, M., Donaldson, J. G., Moss, J. and Vaughan, M. (1998). Brefeldin A- inhibited guanine nucleotide-exchange activity of Sec7 domain from yeast Sec7 with yeast and mammalian ADP ribosylation factors. Proc. Natl. Acad. Sci. USA 95, 4204-4208.
Scheffzek, K., Ahmadian, M. R., Kabsch, W., Wiesmuller, L., Lautwein, A., Schmitz, F. and Wittinghofer, A. (1997). The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333-338.
Schekman, R. and Orci, L. (1996). Coat proteins and vesicle budding. Science 271, 1526-1533.
Schmid, S. L. and Damke, H. (1995). Coated vesicles: a diversity of form and function. FASEB J. 9, 1445-1453.
Schroder, S., Schimmoller, F., Singer-Kruger, B. and Riezman, H. (1995). The Golgi-localization of yeast Emp47p depends on its di-lysine motif but is not affected by the ret1-1 mutation in alpha-COP. J. Cell Biol. 131, 895-912.
Schurmann, A., Breiner, M., Becker, W., Huppertz, C., Kainulainen, H., Kentrup, H. and Joost, H. G. (1994). Cloning of two novel ADP-ribosylation factor-like proteins and characterization of their differential expression in 3T3-L1 cells. J. Biol. Chem. 269, 15683-15688.
Schurmann, A., Massmann, S. and Joost, H. G. (1995). ARP is a plasma membrane-associated Ras-related GTPase with remote similarity to the family of ADP-ribosylation factors. J. Biol. Chem. 270, 30657-30663.
Schurmann, A., Schmidt, M., Asmus, M., Bayer, S., Fliegert, F., Koling, S., Massmann, S., Schilf, C., Subauste, M. C., Voss, M. et al. (1999). The ADP- ribosylation factor (ARF)-related GTPase ARF-related protein binds to ARF-specific guanine nucleotide exchange factor cytohesin and inhibits the ARF-dependent activation of phospholipase D. J. Biol. Chem. 274, 9744-9751.
Serafini, T., Orci, L., Amherdt, M., Brunner, M., Kahn, R. A. and Rothman, J. E. (1991). ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein. Cell 67, 239-253.
Sewell, J. L. and Kahn, R. A. (1988). Sequences of the bovine and yeast ADP-ribosylation factor and comparison to other GTP-binding proteins. Proc. Natl. Acad. Sci. USA 85, 4620-4624.
Shevell, D. E., Leu, W. M., Gillmor, C. S., Xia, G., Feldmann, K. A. and Chua, N. H. (1994). EMB30 is essential for normal cell division, cell expansion and cell adhesion in Arabidopsis and encodes a protein that has similarity to Sec7. Cell 77, 1051-1062.
Shin, O. H., Ross, A. H., Mihai, I. and Exton, J. H. (1999). Identification of arfophilin, a target protein for GTP-bound class II ADP-ribosylation factors. J. Biol. Chem. 274, 36609-36615.
Sondek, J., Lambright, D. G., Noel, J. P., Hamm, H. E. and Sigler, P. B. (1994). GTPase mechanism of Gproteins from the 1.7-A crystal structure of transducin alpha-GDP-AIF-4. Nature 372, 276-279.
Song, J., Khachikian, Z., Radhakrishna, H. and Donaldson, J. G. (1998). Localization of endogenous ARF6 to sites of cortical actin rearrangement and involvement of ARF6 in cell spreading. J. Cel Sci. 111, 2257-2267.
Stearns, T., Kahn, R. A., Botstein, D. and Hoyt, M. A. (1990a). ADP ribosylation factor is an essential protein in Saccharomyces cerevisiae and is encoded by two genes. Mol. Cell. Biol. 10, 6690-6699.
Stearns, T., Willingham, M. C., Botstein, D. and Kahn, R. A. (1990b). ADP-ribosylation factor is functionally and physically associated with the Golgi complex. Proc. Natl. Acad. Sci. USA 87, 1238-1242.
Stepp, J. D., Huang, K. and Lemmon, S. K. (1997). The yeast adaptor protein complex, AP-3, is essential for the efficient delivery of alkaline phosphatase by the alternate pathway to the vacuole. J. Cell Biol. 139, 1761-1774.
Takai, Y., Sasaki, T. and Matozaki, T. (2001). Small GTP-binding proteins. Physiol. Rev. 81, 153-208.
Tamkun, J. W., Kahn, R. A., Kissinger, M., Brizuela, B. J., Rulka, C., Scott, M. P. and Kennison, J. A. (1991). The arflike gene encodes an essential GTP-binding protein in Drosophila. Proc. Natl. Acad. Sci. USA 88, 3120-3124.Tesmer, J. J., Berman, D. M., Gilman, A. G. and Sprang, S. R. (1997a). Structure of RGS4 bound to AlF4--activated G(i alpha1): stabilization of the transition state for GTP hydrolysis. Cell 89, 251-261.Tesmer, J. J., Sunahara, R. K., Gilman, A. G. and Sprang, S. R. (1997b). Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS. Science 278, 1907-1916.
Tsukada, M. and Gallwitz, D. (1996). Isolation and characterization of SYS genes from yeast, multicopy suppressors of the functional loss of the transport GTPase Ypt6p. J. Cell Sci 109, 2471-2481.
Van Aelst, L., Joneson, T. and Bar-Sagi, D. (1996). Identification of a novel Rac1-interacting protein involved in membrane ruffling. EMBO J. 15, 3778-3786.
Van Valkenburgh, H., Shern, J. F., Sharer, J. D., Zhu, X. and Kahn, R. A. (2001). ADP-ribosylation factors (ARFs) and ARF-like 1 (ARL1) Have Both Specific and Shared Effectors. J. Biol. Chem. 276, 22826-22837.
Wooding, S. and Pelham, H. R. (1998). The dynamics of Golgi protein traffic visualized in living yeast cells. Mol. Biol. Cell 9, 2667-2680.
Zeuzem, S., Feick, P., Zimmermann, P., Haase, W., Kahn, R. A. and Schulz, I. (1992). Intravesicular acidification correlates with binding of ADP-ribosylation factor to microsomal membranes. Proc. Natl. Acad. Sci. USA 89, 6619-6623.
Zhang, C. J., Rosenwald, A. G., Willingham, M. C., Skuntz, S., Clark, J. and Kahn, R. A. (1994). Expression of a dominant allele of human ARF1 inhibits membrane traffic in vivo. J. Cell Biol. 124, 289-300.
Zhang, G. F., Patton, W. A., Lee, F. J., Liyanage, M., Han, J. S., Rhee, S. G., Moss, J. and Vaughan, M. (1995). Different ARF domains are required for the activation of cholera toxin and phospholipase D. J. Biol. Chem. 270, 21-24
Zhang, Q., Calafat, J., Janssen, H. and Greenberg, S. (1999). ARF6 is required for growth factor- and Rac-mediated membrane ruffling in macrophages at a stage distal to Rac membrane targeting. Mol. Cell. Biol. 19, 8158-8168

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top