跳到主要內容

臺灣博碩士論文加值系統

(44.220.62.183) 您好!臺灣時間:2024/02/29 02:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何彥儀
研究生(外文):Yen-Yi, Ho
論文名稱:病例對照及病例雙親研究下之基因-基因干擾作用:一種新型式的干擾偏差
論文名稱(外文):Gene-Gene Confounding in Case-Control and Case-Parents Studies: A Novel Form of Confounding Bias
指導教授:李文宗李文宗引用關係
指導教授(外文):Wen-Chung Lee
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:流行病學研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2000
畢業學年度:89
語文別:中文
中文關鍵詞:病例對照研究病例雙親研究干擾作用遺傳流行病學流行病學方法論
外文關鍵詞:case-control studycase-parents studyconfoundingepidemiologic methodsgenetic epidemilogy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:1
中文摘要
目的:本研究提出一種新型式之干擾作用, 稱為'基因-基因干擾作用'。作者探討此干擾作用在病例對照及病例雙親研究中產生的條件及之影響程度。
方法:作者假定疾病由A,B兩易感受基因影響。並推導B基因未被觀察時,A基因之基因型相對危險性估計值的干擾偏差。作者分別以病例雙親及病例對照研究,在均質,分層,及融合族群結構下,進行公式之推演。
結果:經推導之公式得知,由基因所導致的干擾作用包含兩種方式:近距離干擾作用及族群結構干擾作用。這兩個干擾偏差項隨著不同的研究設計及族群結構,變化相當複雜微妙。在病例對照及病例雙親研究中,此兩種干擾偏差皆可能發生。
結論:作者發現基因-基因干擾作用在實際研究中可能有重要的影響。以干擾效應的角度來說,作者亦發現基因較傳統流行病學中的干擾因子更為錯綜複雜。值此後基因時代來臨的關鍵,本研究的發現可成為未來遺傳流行病學研究之重要參考。
關鍵字:病例對照研究,病例雙親研究,干擾作用,遺傳流行病學,流行病學方法論。

ABSTRACT
Purpose: This research proposes a novel form of confounding effect, the 'gene-gene confounding '. The author discusses the criteria for such a confounding effect and quantifies its magnitude in case-control and case-parents studies.
Method: The author assumes two genetic loci, A and B, conferring susceptibility to a disease. When B gene is ignored in the case-control or case-parents study, the confounding biases in the estimation of genotype relative risks for A gene are calculated. This study examines the situations of homogeneous, stratified, and admixed populations, respectively.
Result: It is shown that the confounder gene could incur biases through short-distance confounding or population structure confounding. These two form of confounding effects act intricately under different study designs and population structures. It can happen in case-control as well as in case-parents studies. The degree of bias resulting from gene-gene confounding can be quite substantial in actual practice. The conditions for a genetic confounder are much more complex than the usual confounders in conventional epidemiology.
Conclusion: As epidemiology is fast moving into a post-genomic era, the concept put forth in this study should have important implications for future studies aiming at identification and quantification of disease-susceptibility genes.
KEY WORDS: case-control study, case-parents study, confounding, epidemiologic methods, genetic epidemilogy.

中文摘要
ABSTRACT
第一章 前言1
第二章 背景介紹4
第三章 公式推導10
第四章 偏差之產生及比較21
第五章 例子26
第六章 討論33
參考文獻36
附錄(一)39
附錄(二)41
附錄(三)43

參考文獻
1. Haines JL. Pericak-Vance MA. Approaches to Gene Mapping in Complex Human Diseases. John Wiley and Sons. New York. 1998.
2. Arver B. Du Q. Chen J. Luo L. Lindblom A. Hereditary breast cancer: a review. Seminars in Cancer Biology 10(4): 271-88, 2000.
3. Dunning AM. Healey CS. Pharoah PD. Teare MD. Ponder BA. Easton DF. A systematic review of genetic polymorphisms and breast cancer risk. Cancer Epidemiology, Biomarkers & Prevention 8(10): 843-54, 1999.
4. Schultz LB. Weber BL. Recent advances in breast cancer biology. Current Opinion in Oncology 11(6): 429-34, 1999.
5. Moysich KB. Freudenheim JL. Baker JA. Ambrosone CB. Bowman ED. Schisterman EF. Vena JE. Shields PG. Apolipoprotein E genetic polymorphism, serum lipoproteins, and breast cancer risk. Molecular Carcinogenesis 27(1): 2-9, 2000.
6. Weber BL. Nathanson KL. Low penetrance genes associated with increased risk for breast cancer. European Journal of Cancer 36(10): 1193-9, 2000.
7. Ninkina NN. Alimova-Kost MV. Paterson JW. Delaney L. Cohen BB. Imreh S. Gnuchev NV. Davies AM. Buchman VL. Organization, expression and polymorphism of the human persyn gene. Human Molecular Genetics 7(9): 1417-24, 1998.
8. Ewens WJ. Spielman RS. The transmission/disequilibrium test: history, subdivision, and admixture. American Journal of Human Genetics 57(2): 455-64, 1995.
9. Witte JS. Gauderman WJ. Thomas DC. Asymptotic bias and efficiency in case-control studies of candidate genes and gene-environment interactions: basic family designs. American Journal of Epidemiology 149(8): 693-705, 1999.
10. Wacholder S. Rothman N. Caporaso N. Population stratification in epidemiologic studies of common genetic variants and cancer: quantification of bias. Journal of the National Cancer Institute 92(14): 1151-8, 2000.
11. Self SG. Longton G. Kopecky KJ. Liang KY. On estimating HLA/disease association with application to a study of aplastic anemia. Biometrics 47(1): 53-61, 1991.
12. Sun F. Flanders WD. Yang Q. Khoury MJ. A new method for estimating the risk ratio in studies using case-parental control design. American Journal of Epidemiology 148(9): 902-9, 1998.
13. Lee WC. Chang CH. Estimating genotype relative risks in case-parental control studies: an optimal weighting approach. American Journal of Epidemiology 152(5): 487-92, 2000.
14. Yang Q. Khoury MJ. Sun F. Flanders WD. Case-only design to measure gene-gene interaction. Epidemiology 10(2): 167-70, 1999.
15. Devlin B. Risch N. A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics 29(2): 311-22, 1995.
16. Chakraborty R. Smouse PE. Recombination of haplotypes leads to biased estimates of admixture proportions in human populations. Proceedings of the National Academy of Sciences of the United States of America 85(9): 3071-4, 1988.
17. Spielman RS. McGinnis RE. Ewens WJ. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). American Journal of Human Genetics. 52(3):506-16, 1993
18. McKeigue PM. Mapping genes underlying ethnic differences in disease risk by linkage disequilibrium in recently admixed populations. American Journal of Human Genetics. 60(1):188-96, 1997
19. Kaplan NL. Martin ER. Morris RW. Weir BS. Marker selection for the transmission/disequilibrium test, in recently admixed populations. American Journal of Human Genetics. 62(3):703-12, 1998
20. Breslow NE. Day NE. Statistical Methods in Cancer Research. Vol I. The Analysis of Case-control Studies. IARC Scientific Publication. No. 32. Lyon. France. 1980.
21. Rothman KJ. Greenland S. Modern Epidemiology. 2nd edition. Lippincott-Raven. Philadephia. 1998.
22. Risch N. Merikangas K. The future of genetic studies of complex human diseases. Science 273(5281): 1516-7, 1996.
23. Khoury MJ. Yang Q. The future of genetic studies of complex human diseases: an epidemiologic perspective. Epidemiology 9(3): 350-4, 1998.
24. Khoury MJ. Little J. Human genome epidemiologic reviews: the beginning of something HuGE. American Journal of Epidemiology 151(1): 2-3, 2000.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top