跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/12 20:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施惟量
研究生(外文):Shih Wei-Liang
論文名稱:砷暴露者與抽菸者移行上皮細胞癌之p53基因突變譜之比較研究
論文名稱(外文):Comparison of the Mutation Spectrum of p53 gene between Arsenic-related and Tobacco-related Transitional Cell Carcinoma
指導教授:陳建仁陳建仁引用關係
指導教授(外文):Chen, Chien-Jen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:流行病學研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:74
中文關鍵詞:p53基因突變譜砷暴露抽菸移行上皮細胞癌
外文關鍵詞:p53 mutation spectrumarsenictobaccoTransitional Cell Carcinoma
相關次數:
  • 被引用被引用:2
  • 點閱點閱:259
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
p53基因為一重要的抑癌基因,在超過50%以上的癌症都可發現其p53基因有突變發生。膀胱癌的發生率和死亡率在臺灣都不算高,但是在臺灣西南沿海的烏腳病地區,膀胱癌的死亡率和發生率則比臺灣其他地區高出許多。無機砷的暴露已經被認為是造成此一現象的原因,而香菸暴露則是西方國家膀胱癌最主要的危險因子。透過p53基因突變譜的分析研究,可以得知特殊突變類型、突變位置及突變率可能和某些特定突變物質暴露有關。因此本研究將比較砷暴露者與抽菸者的移行上皮細胞癌,其p53基因突變譜的異同。
本研究以114名自1998年至2000年9月從台南奇美醫院所收集30歲以上的泌尿道移行上皮細胞癌病人為研究對象,利用聚合?連鎖反應(polymerase chain reaction)和DNA定序(DNA sequencing)以及問卷訪視的結果來分析比較砷暴露、香菸暴露、及其他可能的影響因素與p53基因變異間的相關性。
在114名研究對象中,發現41人有p53基因突變,p53基因的突變率為35.9%。在有基因突變的41名個案中,總共發現有48個突變事件,最主要的突變類型是G:C→A:T的transition,而主要的突變位置是exon8和exon6,其中有14.3%的點突變是發生在CpG位置。突變的好發點有譯碼子175、241、248、273、280、282及285。砷暴露者的突變率為44%,主要的突變類型是G:C→A:T,突變位置則是exon8和exon6,CpG位置的突變則佔有8.7%;香菸暴露者的突變率為36.8%,主要的突變類型是G:C→A:T,突變位置則是exon8,其中CpG位置的突變佔了30%。此外腫瘤的級數、期數愈高p53基因突變的平均次數也愈高;香菸暴露者的p53基因突變較低;女性的平均突變次數則較男性高。抽菸者與非抽菸者以及男女之間突變情形的差異可能是「接觸染髮劑」此一原因造成的。
整體而言砷暴露、香菸暴露、性別、腫瘤級數和期數、使用染髮劑都和p53基因突變有相關。砷暴露與香菸暴露的p53基因突變譜有相同及相異處,而和過去有關的研究比較起來也有不同的基因突變譜。

p53 gene id an important gene and over 50% human cancer were found to contain p53 mutation. The incidence and mortality of the bladder cancer in Taiwan were comparatively low. But in the southwestern Taiwan, especially in the area of blackfoot disease, the incidence and mortality were more higher than others. It has been considered that inorganic arsenic was the major reason for the results. In the Europe and North America the major risk factor of the bladder cancer was cigarette smoking. By studying the p53 mutation spectrum we could find that the special mutation type, location, and frequency might be link to some mutagen or exposure. In this study we will compare the mutation spectrum of p53 gene between arsenic-related and tobacco-related transitional cell carcinoma.
114 transitional cell carcinomas of the bladder, ureter, kidney, and pelvic cancer patients were obtained in the Chi-Mei Foundation Medical Center from 1998 to September 2000. Sequence of p53 gene in exon5-8 was performed using PCR-based method and direct DNA sequencing. And the information of the arsenic exposure, cigarette smoking, and other risk factors were obtained by using the questionnaire.
Forty-one tumors were found to contain 48 mutations in the 114 cases. Totally the p53 gene mutation frequency was 35.9%(41/114). The most frequent mutation type was G:CaA:T transition and the major mutation location were exon8 and exon6. 14.3% of the point mutation was at CpG sites. The mutation hot spots in the TCC were codon 175, 241, 248, 273, 280, 282, and 285.
In the arsenic-related TCC, the mutation frequency was 44% and the major mutation type was G:CaA:T transition. The frequent mutation location were exon8 and exon6 and 8.7% of the point mutation in the arsenic-related TCC was happened at CpG sites. In the tobacco-related TCC, the mutation frequency was 36.8% and G:CaA:T transition was also the most frequent mutation type. The mutations happened on exon8 were higher than others and 30%of these were happened on the CpG sites. In addition to arsenic exposure and tobacco smoking, the higher of the tumor grade or stage, the more p53 mutation was be found. The p53 mutation in female was higher than male, and the mutation pattern was also different with each other. In the smokers the mutation was lower than the nonsmokers. The difference found in female and male and in smokers and nonsmokers might results from using hair dyes.
In total, the arsenic exposure, cigarette smoking, sex, tumor grade , stage, and hair dyes may have impact on the mutation spectrum of the p53. A comparison of the mutation spectrum reveals that there were the same and different mutation pattern between arsenic-related and tobacco-related TCC. And the spectrum of the arsenic-related and tobacco-related TCC were also different with other studies.

目 錄
致謝.........................................................................................................................................Ⅰ
中文摘要.................................................................................................................................Ⅱ
英文摘要.................................................................................................................................Ⅳ
目錄.........................................................................................................................................Ⅵ
圖表目錄.................................................................................................................................Ⅶ
第一章 前言............................................................................................................................1
第二章 文獻探討...................................................................................................................3
第一節 泌尿道移行上皮細胞癌之描述流行病學特徵...............................................3
第二節 泌尿道移行上皮細胞癌危險因子之流行病學研究......................................5
第三節 無機砷與香菸暴露的基因毒性.........................................................................7
第四節 P53抑癌基因..........................................................................................................9
第五節 P53基因突變譜與癌症之相關研究..................................................................12
第六節 研究目的及假說..................................................................................................17
第三章 材料與方法..............................................................................................................18
第一節 研究個案...............................................................................................................18
第二節 實驗方法...............................................................................................................20
第三節 檔案處理及統計分析方法.................................................................................29
第四章 結 果..........................................................................................................................30
第一節 研究個案基本資料..............................................................................................30
第二節 P53基因突變圖譜................................................................................................30
第三節 癌症級數、期數與P53基因突變的關係.........................................................38
第四節 性別、年齡與P53基因突變的關係..................................................................41
第五節 香菸暴露相關因子與P53基因突變的關係.....................................................44
第六節 砷暴露相關因子與P53基因突變的關係.........................................................49
第七節 CPG位置的突變...................................................................................................58
第五章 討 論..........................................................................................................................59
第一節 P53基因突變比率、類型與位置......................................................................59
第二節 各項危險因子與P53基因突變的關係.............................................................60
第三節 結 論......................................................................................................................67
參 考 文 獻.............................................................................................................................70
附 錄........................................................................................................................................74

Abernathy Charles O., Liu Yung-Pin, Longfellow David, et al., Arsenic: Health Effects, Mechanisms of Actions, and Research Issues. Environmental Health Perspectives 107: 593-597, 1999.
Arnold J. Levine, p53, the Cellular Gatekeeper for Growth and Division. Cell 88: 323-331,1997.
Baan R.A., Steenwinkel M.-J.S.T., Berg P.T.M., et al., Molecular Dosimetry of DNA Damage Induced by Polycylcic Aromatic Hydrocarbons: Relevance for Exposure Monitoring and Risk Assessment. Human & Experimental Toxicology 13: 880-887, 1994.
Bates MN., Smith AH., Cantor KP., Case-Control Study of Bladder Cancer and Arsenic in Drinking Water. American Journal of Epidemiology 141: 523-530, 1995.
Biggs ML., Ka.man DA., Moore LE., et al. Relationship of Urinary Arsenic to Intake Estimates and a Biomarker of Effect, Bladder Cell micronuclei. Mutation Research 386: 185-195, 1997.
Bruemmer B., White E., Vaughan TL., et al. Nutrient Intake in Relation to bladder Cancer among Middle-aged Men and Women. American Journal of Epidemiology 144: 485-495, 1996.
Chen CJ., Wang CJ., Ecological Correlation between Arsenic Level in Well Water and Age-adjusted Mortality from Malignant Neoplasms. Cancer Research 50: 5470-5474, 1990.
Chen PL., Chen YM., Bookstein R., et al. Genetic Mechanisms of Tumor Suppression by the Human p53 Gene. Science 250: 1576-1580, 1990.
Chiang HA, Guo HR, Hong Cl, et al., 1993. The Incidence of Bladder Cancer in the Blackfoot Disease Endemic Area in Taiwan. British Journal of Urology 71: 274-278.
Chiang HS., Guo HR., Hong CL., et al. The Incidence of Bladder Cancer in the Black Foot Disease Endemic Area in Taiwan. British Journal of Urology 71: 274-278, 1993.
David Malkin, p53 and the Li-Fraumeni Syndrome. Cancer Genetics Cytogenetics 66: 83-92, 1993.
Delarosa M.E., Magnusson J., Ramel C., et al. Modulating Influence of Inorganic Arsenic on the Recombinogenic and Mutagenic Action of Ionizing Radiation and alkylating Agents in Dorsophila Melanogaster. Mutation Research: Review in Genetic Toxicology 318: 65-71, 1994.
Gerd P. Pfeifer, p53 Mutational Spectrum and the role of Methylated CpG Sequences. Mutation Research 450: 155-166, 2000.
Greenblatt M. S., Bennett W. P., Hollstein M., Harris C. C., Mutations in the p53 Tumor Suppressor Gene: Clues to Cancer Etiology and Molecular Pathogenesis. Cancer Research 54: 4855-4878, 1994.
Greenblatt MS., Bennett WP., Hollstein M., et al., Mutation in the p53 Tumor Suppressor gene: Clues to Cancer Etiology and Molecular Pathogenesis. Cancer Research 54: 4855-4878, 1994.
Guinee DG., Travis WD., Trivers GE., et al., Gender Comparison in Human Lung Cancer: Analysis of p53 Mutation, Anti-Serum p53 Antibodies and C-erB-2 Expression. Carcinogenesis 16: 993-1002, 1995.
Habuchi T., Takahasi R., Yamada H., et al., Influence of Cigarette Smoking and Schistosomiasis on p53 Gene Mutation in Urothelial Cancer. Cancer Research 53: 3795-3799, 1993.
Hopenhayn-Rich C., Biggs ML., Fuchs A., et al. Bladder Cancer Mortality Association with Arsenic in Drinking Water in Argentina. Epidemiology 7(2): 117-124, 1996.
Hsieh L-L, Chen H-J, Hsieh J-T, et al., Arsenic-related Bowen's Disease and Paraquat-related Skin Cancerous Lesions Show No Detectable ras and p53 gene Alterations. Cancer Letters 86: 59-65, 1994.
Hsu C-H, Yang S-A, Wang Y-J, et al., Mutation Spectrum of p53 Gene in arsenic-related skin cancers from the blackfoot diease endemic area of Taiwan. British Journal of Cancer 88(7): 1081-1086, 1999.
Husgafvel-Pursiainen K., Kannio A., Cigarette Smoking and p53 Mutation in Lung Cancer and Bladder Cancer. Environmental Health Perspectives 104: Sup 3, 553-556, 1996.
Hussain P. S., Harris C. C., p53 Mutation Spectrum and load: the Generation of Hypothesis Linking and the Endogeneous or Exogeneous to Human Cancer. Mutation Research 428: 23-32, 1999.
IARC, IARC Monographs on the Evaluation of the Carcinogenic risk of Chemicals to Humans. Vol. 38 Tobacco Smoking. International Agency for Research on Cancer, Lyon, France.
International Agency for Research on Cancer, IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man: Some Metals and Metallic Compounds. International Agency for Research on Cancer 23: Lyon, 1980.
Jacobson KD and Montalbano D. The Reproductive Effects Assessment Group's Report on the Mutagenicity of Inorganic Arsenic. Environmantal Mutagen 7: 787-804, 1985.
James Huff, Po Chan, and Abraham Nyska, Is the Human Carcinogen Arsenic Carcinogenic to Laboratory Animals? Toxicological Sciences 55: 17-23, 2000.
Karagas MR., Tosteson TD., Blum J., et al., Design of an Epidemiologic Study of Drinking Water Arsenic Exposure and Skin and Bladder Cancer Risk in U. S. Population. Environment Health Perspective 106 Sul 4: 1047-1050, 1998.
Konstantinos N.S. and Donald G.S. Bladder Cancer: Biology, diagnosis and Management. Oxford: 11-55, 1999.
Kure EH., Ryberg D., Hewer A., et al., p53 Mutation in Lung Tumors: Relationship to Gender and Lung DNA Adduct Level. Carcinogenesis 17: 2201-2205, 1996.
Lee TC, Thanka N., Lamb W., et al. Induction on Gene Amplification by Arsenic. Science 241: 79-81, 1988.
Luchtrath H., The Consequences of Chronic Arsenic Posioning among Mosells wine Growers: Pathoanatomical Investigations of Post-Mortem Examination Performed between 1960 and 1977. Journal of Cancer Research Clinical Oncology 105: 173-182, 1983.
Melchior W.B., Marques M.M., and Beland F.A., Mutations Induced by Aromatic Amine DNA Adducts in pBR322. Carcinogenesis (Lond.) 15: 889-899, 1994.
Monica H., Gerd M., Manfred H., et al., On the Origins of Tumor Mutations in Cancer Genes: Insights from the p53 Gene. Mutation Research 405: 145-154, 1998.
Pierre May, Evelyna May, Twenty Years of p53 Research: Structural and Functional Aspects of the p53 Protein. Oncogene 18: 7621-7636, 1999.
Rozanski T. A., Grossman H. B.,Recent developments in Pathophysiology of bladder Cancer. American Journal of Roentgenology 163: 789-792, 1994.
Shibata A., Ohneseit P. F., Tsai Y. C., et al., Mutational spectrum in the p53 gene in bladder tumors from the endemic area of black foot disease in Taiwan. Carcinogenesis 15 No.6: 1085-1087, 1994.
Smith AH., Goycolea M., Haque R., Marked Incidence in Bladder and Lung Cancer Mortality in a Region of Northern Chile due to Arsenic in Drinking Water. American Journal of Epidemiology 147: 660-669, 1998.
Spruck C. H., Rideout W. M., Olumi A. F., et al., Distinct Pattern of p53 Mutation in Bladder Cancer: Relationship tp Tobacco Usage. Cancer Research 53: 1162-1166, 1993.
Thierry Soussi and Pierre May, Structural Aspects of the p53 Protein in Regulation to Gene Evolution: A Second Look. Journal of Molecular Biology 260: 623-637, 1996.
Tsuda T., Babazono A., Yamamoto E., et al., Ingested Arsenic and Internal Cancer: A Historical Cohort Study Followed for 33 Years. American Journal of Epidemiology 141: 198-209, 1995.
Vizcaino et al., Bladder Cancer: Epidemiology and Risk Factors in Bulawayo, Zimbabwe. Cancer Causes and Control 5: 517-522, 1994.
William P. Bennett, S. Perwez Hussan, Kirsi H. Vahakangas, et al., Molecular Epidemiology of Human Cancer Risk: Gene-Environment Interaction and p53 Mutation Spectrum in Human Lung Cancer. Journal of Pathology 187: 8-18, 1999.
Xu X., Stower M. J., Reid I. N., et al. A Hot Spot for p53 Mutation in Transitional Cell Carcinoma of the Bladder: Clues to the Etiology of Bladder Cancer. Cancer Epidemiology, Biomarkers & Prevention 6: 611-616, 1997.
Zhan Q, Antinore MJ., Wang XW., et al. Association with Cdc2 and inhibition of Cdc2/Cyclin B1 kinase activity by the p53-regulated protein GADD45. Oncogene 18: 2892-2900, 1999.
行政院衛生署, 中華民國癌症登記報告: 98-99, 民國八十九年.
邱弘毅、薛玉梅、許益祥等, 無機砷與內臟癌相關之流行病學研究。中華衛誌15:92-108, 1996。
許鈴宜, 陳建仁, 1994. 膀胱癌之描述性流行病學、危險因子及遺傳易感受性. 中華衛誌 18, No,6, 387- 412 。
廖崑富、洪申發、林莉如等, 烏腳病病患及盛行地區健康對照下泌尿道癌之長期世代追蹤研究。中華衛誌14: 502-511, 1995.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊