跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/17 08:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳美娥
研究生(外文):mei-o chen
論文名稱:台灣公債利率期限結構之配適-以契比雪夫多項式為例
論文名稱(外文):Fit the Term Structure of Interest Rates Using Chebyshev polynomials Model :The Case of Taiwanese Government Bonds
指導教授:林丙輝林丙輝引用關係
指導教授(外文):Bing Huei Lin
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:企業管理系
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:84
中文關鍵詞:利率期限結構公債契比雪夫多項式
外文關鍵詞:term structure of interest ratesgovernment bondChebyshev polynomials
相關次數:
  • 被引用被引用:10
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
固定資產的分析,從債券的交易到衍生性金融商品的評價,都需從利率期限結構的建構開始。對於利用何種方法去估計利率期限結構仍有爭議。例如從選擇何種固定資產作為評價的樣本、配適的標的為何(折現、即期、遠期利率函數)等。在實務上,以實際資料所繪製的實證利率期限結構仍為普遍採用的模式。而建構實證利率期限結構必須兼顧平滑度及精確度兩個目標。本文主要的目的是依據Pham (1998)首次使用的契比雪夫多項式模型,去配適台灣公債的利率期限結構。並選用國內Lin (1999)以樣條函數為基礎來測繪我國的收益曲線的文章作比較。並利用櫃檯買賣中心的成交價報價和Lin (1999)的選樣資料、兩種參數設定(四個參數、六個參數),去做對於配適利率期限結構不同變數結果可能造成的影響。實證結果如下:
一、契比雪夫多項式被工程和科學界所善用,而本論文卻是第一次將他使用在配適台灣公債的利率期限結構。
二、Chebyshev polynomials配適的殖利率曲線可克服部分傳統使用spline 和回歸(regression)方法配適時所產生的弱點。模型克服部分因為要求曲線平滑而設定了不同程度的限制。Chebyshev polynomials不要求特別的函數形式,卻可得到平滑的殖利率曲線。此外,。Chebyshev polynomials模型可適用於各種資料的配適。
三、在四種情形下,契比雪夫多項式所配適出的利率期限結構(即期利率曲線、遠期利率曲線),皆相當的平滑。而得出的即期利率曲線相當的穩定且符合市場上的狀況。但遠期利率曲線在長期時,會產生負值和利率超過1等不合理的情形。
Fixed-income analysis, from bond trading to derivatives valuation, are based on the term structure of interest rates. Issues arise as to the methodology for estimating a tem structure, such as which fixed —income prices to be used as inputs, which curves to be estimated (forward, spot, or discount function). The Objectives in empirical estimation of the term structure are smoothness and accuracy. The purpose of this thesis is to fit the term structure of interest rates for Taiwanese government bonds by using the Chebyshev polynomials model which was first used by Pham (1998). And results are compared with the paper published by Lin (1999), which applies the spline function techniques to fit the yield curve in Taiwanese government bonds.
The contribution and conclusion of this study are as follows:
1. While Chebyshev polynomials are well known in engineering and science, this thesis is the first to use it to fit the term structure of interest rates in Taiwanese government bonds.
2. Chebyshev polynomials possess desirable properties that improve the econometrics of zero-coupon yield curve fitting. Specifically it can partly overcome the problem of arbitrary degree of smoothing in that it does not require specification of a functional form. Moreover, Chebyshev polynomials makes use of the entire range of available date.
3. In four conditions,we can get smoothness to fit the term structure of interest rates by using the Chebyshev polynomials model. The spot rate curve look stabl and reliable. However, the forward rate curve fluctuate more dramatically for longer maturity and decline to negative values for longer maturity.
第一章 緒論1
第一節 研究動機1
第二節 研究目的3
第三節 研究架構5
第二章 文獻探討6
第一節 文獻回顧6
第二節 利率期限結構之均衡模式9
第三節 利率期限結構估計之實證近似模式12
第四節 實證研究:國際性的觀點21
一、利率期限結構的國外實證論文回顧:22
二、利率期限結構的國內實證論文回顧:24
第三章 研究設計與方法27
第一節 研究假設27
第二節 研究資料說明27
第三節 模型介紹29
一、估計利率期限結構一般式29
二、Chebyshev polynomials模型再探討31
第四節 實證統計分析38
一、準確度比較的準則38
二、平滑度的衡量38
第五節 研究限制39
一、債券樣本的選取39
二、在模型參數的限制上39
三、忽略交易成本和賦稅39
第四章 實證結果41
第一節 資料輸入與說明41
第二節 契比雪夫模型的實證結果42
一、模型的配適度42
二、平滑度50
三、模型配適出的即期利率和遠期利率52
四、因素分析59
第五章 結論與建議61
第一節 實證結論61
一、利率累加函數(interest cumulator)61
二、模型的配適力61
三、平滑度63
四、利率期限結構63
第二節 建議64
一、模型特質的探討64
二、參數的選取65
三、樣本的選取65
四、模型的預測性66
參考文獻67
附錄一 本研究所選取的公債樣本資料72
附錄二 利用契比雪夫折現配適模型所估出的參數76
附錄三 利用契比雪夫折現配適模型所估出的參數(續)83
參考文獻
國內文獻部分
期刊:
1. 林慧貞與李賢源,「最大平滑度遠期利率曲線配適模型之在探討」,中國財務學刊(journal of financial studies),第6卷第五期,(民國87年7月),46頁。
2.李賢源與謝承熹,「以分段三次指數函數及非線性最適化技巧配適-台灣公債市場之利率期限結構」,管理與系統,第五卷,第二期,(民國87年7月),277-290頁。
3.蔣松原,「建構台灣市場殖利率曲線」,貨幣觀測與信用評等,民國89年3月,99-119頁。
論文:
4.李樹仁,「建構實證利率期限結構之研究-條樣函數的應用」,台灣大學商學研究所未出版之碩士論文,民國八十三年六月。
5.吳秉儒,「日本國債利率期限結構估計之實證研究」,台灣科技大學管理技術研究所企業管理學程未出版之碩士論文,民國八十五年六月。
6.林嘉生,「台灣公債殖利率曲線之估計」,台灣大學財務金融研究所
未出版之碩士論文,民國八十六年六月。
書籍:
7.Gerald Wheatly著,劉睦雄與張任業譯,應用數值分析,台北圖書有限公司,民國七十九年。
國外文獻部分
Journal :
1. Adams, K.J. and D.R. Van Deventer (1994), “Fitting Yield Curves and Forward Rate Curves with Maximium Smoothness”, Journal of Fixed Income, June, pp.52-62.
2. Babbs, S.H. (1990), “ The Term Structure of Interest Rates”, PhD Thesis, London University.
3. Barone, Emilio, Domenico Cuoco, and Emerico Zautzik (1991), “Term Structure Estimation Using the Cox, Ingersoll, and Ross Model:The Case of Italian Treasury Bonds”, Journal of Fixed Income1, pp.87-95.
4. Bradley, S.P. and D.B. Crane (1973), “Management of Commercial Bank Government Security Portfolios:An Optimization Approach Under Uncertainty”, Journal of banking research, spring, pp18-30.
5. Brown, R.H. and S.M. Schaefer (1994), “The Term Structure of Real Interest Rates and the Cox, Ingersoll, and Ross Model”, Journal of Financial Economics 35, pp.3-42.
6. Brown, S.J. and P.H. Dybvig (1986), “The Empirical Implications of the Cox, Ingersoll, Ross Theory of The Term Structure of Interest Rates”, The Journal of Finance, Vol.41, pp617-630.
7. Brennan, Michael J., and Schwartz, and Eduardo S. (1979), “A Continuous Time Approach to the pricing of Bonds”, Journal of banking and Finance, Vol.3, pp.133-155.
8. Carleton W.T. and I.A. Cooper, (1976) “Estimation and Uses of the Term Structure of Interest Rates”, The Journal of Finance, Vol.31, No.4, pp1067-1083.
9. Carr, J.L., P.J. Halpern, and J.S. McCallum (1974), “Correcting the Yield Curve : A Re-Interpretation of the Duration Problem”, The Journal of Finance, Vol. 29, No. 4, pp. 1287-1294.
10. Chambers, D.R., W.T. Carleton, and D.W. Waldman (1984), “Á New Approach To Estimation of the Term Structure of Interest Rates”, Journal of Financial and Quantitative Analysis, Vol. 19, No. 3, pp.233-251.
11. Cohen, K.J., R.L. Krammer, and W.H. Waugh (1966), “Regression Yield Curves for U. S. Government Securities”, Management Science, No. 4, December, pp. 168~ 175.
12. Cox, J.C., J.E. Ingersoll, and S.A. Ross (1985a), “An Intertemporal General Equilibrium Model of Asset Prices”, Econometric, Vol.53, No.2, pp363-384.
13. Cox, J.C., J.E. Ingersoll, and S.A. Ross (1985b), “A Theory of the Term Structure of Interest Rates”, Econometrica, Vol.53, No.2, pp. 385-407.
14. Dothan L. (1978), “On the Term Structure of Interest Rates”, Journal of Financial Economics 6, pp. 59-69.
15. Durand (1942), Basic Yields of Corporate Bonds, New York National Bureau of Economic Research.
16. Echols, Michael E. and Jan Walter Elliott (1976), “A Quantitative Yield Curve Model for Estimating the Term Structure of Interest Rates”, Journal of Financial and Quantitative Analysis, March, pp. 233-251.
17. Ferguson, R. and S. Raymar, (1998), “A Comparative Analysis of Several Popular Term Structure Estimation Models”, Journal of Fixed Income, March, pp.17-33.
18. Fisher, Lawrence and Roman Weil (1971), “Coping with the Risk of Interest Rate Fluctuations: Returns to Bondholders from Naïve and Optimal Strategies”, Journal of Business, Vol. 44, Oct, pp.408-432.
19. Heath, D., R. Jarrow, and A. Morton (1992), “Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claims Valuation”, Econometrica, Vol. 60, No.1, pp. 77-105.
20. Ho, T.S.Y. and S.B. Lee (1986), “Term Structure Movements and Pricing Interest Rate Contingent Claim”, The Journal of Finance, Vol. 41, No. 5, pp.1011-1029.
21. Hull, J. and A. White (1990), “Pricing Interest Rate Derivative Securities”, Review of Financial Studies, Vol. 3, No. 4, pp.573-592
22. Langetieg, T.C. and J.S. Smoot (1989), “Estimation of the Term Structure of Interest Rates”,Res. Fin. Serv.1, pp181-222.
23. Lin, B.H. (1999), “Fitting the Term Structure of Interest Rates For Taiwanese Government Bonds”, Journal of Multinational Financial Management 9,pp.331-352.
24. Lin, B.H. and D.A. Paxson, D.A. (1993), “Valuing The New-issue Quality Option In Bond Futures”, Rev. Futures Mark, Vol. 12, No. 2, pp.349-388.
25. Livingston, M. and J. Caks (1977), “A ‘Duration’ Fallacy”, The Journal of Finance, Vol. 32, No. 1, pp. 185-187.
26. McCulloch, J.H. (1971), “Measuring the term structure of interest rates”, Journal of Business 44, pp.19-31
27. McCulloch, J.H. (1975), “The tax-adjusted yield curve”, The Journal of Finance, Vol. 31, No.3, pp.811-830.
28. Munnik, F.J. and Schotman, P.C. (1994), “Cross-section versus Time Series Estimation of Term Structure Models: Empirical Results from Dutch Bond Market”, Journal of Banking & Financial 18, pp.997-1025.
29. Nelson, C.R. and A. F. Siegel (1987), “Parsimonious Modeling of Yield Curve”, Journal of Business, Vol. 60, No. 4, pp.473-489.
30. Pham, T.M. (1998), “Estimation of Term Structure of Interest Rates:An International Perspective”, Journal of Multinational.Financial Management 8, pp.265-283.
31. Powell, M.J.D. (1981), Approximation Theory and Methods, Cambridge University Press.
32. Rose, D. and W.E. Schworm (1980), “Measuring the Term Structure of Prices for Canadian Federal Government Debt.” Discussion paper no.08-81, The University of British Columbia.
33. Schaefer, S.M. and E.S. Schwartz (1984), “A Two Factor Model of the term Structure: An Approximate Analytic Solution”, Journal of Financial and Quantitative Analysis 19, pp413-424.
34. Shea, G.S. (1985), “Interest Rate Term Structure Estimation with Exponential Splines : A Note”, The Journal of Finance, Nol. 40, No. 1, pp. 319-325.
35. Steeley, J.M. (1991), “Estimating the Gilt-edged Term Structure Date:Basis-splines and Confidence Intervals”, Journal of business & Finance Accounting 18(4), 513-529.
36. Vasicek, O.A. and Fong H.G.(1982), “ Term Structure Modeling Using Exponential Splines”, Journal of Finance, Vol. 37, No. 2, pp.339-356.
37. Vasicek, Oldrich (1977), “An Equilibrium Characterization of the Term Structure”, Journal of Financial Economics 5, pp,177-188.
Book :
38. J. Douglus. Faires & Richard Burden., (1998) Numerical Methods-2nd ed., Brooks publishing company.
39. Kmenta, J., (1971) Elements of Econometrics, NewYork:MacMillan Publishing company.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊