# 臺灣博碩士論文加值系統

(98.82.120.188) 您好！臺灣時間：2024/09/17 08:13

:::

### 詳目顯示

:

• 被引用:10
• 點閱:254
• 評分:
• 下載:0
• 書目收藏:2
 固定資產的分析，從債券的交易到衍生性金融商品的評價，都需從利率期限結構的建構開始。對於利用何種方法去估計利率期限結構仍有爭議。例如從選擇何種固定資產作為評價的樣本、配適的標的為何(折現、即期、遠期利率函數)等。在實務上，以實際資料所繪製的實證利率期限結構仍為普遍採用的模式。而建構實證利率期限結構必須兼顧平滑度及精確度兩個目標。本文主要的目的是依據Pham (1998)首次使用的契比雪夫多項式模型，去配適台灣公債的利率期限結構。並選用國內Lin (1999)以樣條函數為基礎來測繪我國的收益曲線的文章作比較。並利用櫃檯買賣中心的成交價報價和Lin (1999)的選樣資料、兩種參數設定(四個參數、六個參數)，去做對於配適利率期限結構不同變數結果可能造成的影響。實證結果如下： 一、契比雪夫多項式被工程和科學界所善用，而本論文卻是第一次將他使用在配適台灣公債的利率期限結構。 二、Chebyshev polynomials配適的殖利率曲線可克服部分傳統使用spline 和回歸(regression)方法配適時所產生的弱點。模型克服部分因為要求曲線平滑而設定了不同程度的限制。Chebyshev polynomials不要求特別的函數形式，卻可得到平滑的殖利率曲線。此外，。Chebyshev polynomials模型可適用於各種資料的配適。 三、在四種情形下，契比雪夫多項式所配適出的利率期限結構(即期利率曲線、遠期利率曲線)，皆相當的平滑。而得出的即期利率曲線相當的穩定且符合市場上的狀況。但遠期利率曲線在長期時，會產生負值和利率超過1等不合理的情形。
 Fixed-income analysis, from bond trading to derivatives valuation, are based on the term structure of interest rates. Issues arise as to the methodology for estimating a tem structure, such as which fixed —income prices to be used as inputs, which curves to be estimated (forward, spot, or discount function). The Objectives in empirical estimation of the term structure are smoothness and accuracy. The purpose of this thesis is to fit the term structure of interest rates for Taiwanese government bonds by using the Chebyshev polynomials model which was first used by Pham (1998). And results are compared with the paper published by Lin (1999), which applies the spline function techniques to fit the yield curve in Taiwanese government bonds. The contribution and conclusion of this study are as follows： 1. While Chebyshev polynomials are well known in engineering and science, this thesis is the first to use it to fit the term structure of interest rates in Taiwanese government bonds. 2. Chebyshev polynomials possess desirable properties that improve the econometrics of zero-coupon yield curve fitting. Specifically it can partly overcome the problem of arbitrary degree of smoothing in that it does not require specification of a functional form. Moreover, Chebyshev polynomials makes use of the entire range of available date. 3. In four conditions，we can get smoothness to fit the term structure of interest rates by using the Chebyshev polynomials model. The spot rate curve look stabl and reliable. However, the forward rate curve fluctuate more dramatically for longer maturity and decline to negative values for longer maturity.
 第一章 緒論1 第一節 研究動機1 第二節 研究目的3 第三節 研究架構5 第二章 文獻探討6 第一節 文獻回顧6 第二節 利率期限結構之均衡模式9 第三節 利率期限結構估計之實證近似模式12 第四節 實證研究：國際性的觀點21 一、利率期限結構的國外實證論文回顧：22 二、利率期限結構的國內實證論文回顧：24 第三章 研究設計與方法27 第一節 研究假設27 第二節 研究資料說明27 第三節 模型介紹29 一、估計利率期限結構一般式29 二、Chebyshev polynomials模型再探討31 第四節 實證統計分析38 一、準確度比較的準則38 二、平滑度的衡量38 第五節 研究限制39 一、債券樣本的選取39 二、在模型參數的限制上39 三、忽略交易成本和賦稅39 第四章 實證結果41 第一節 資料輸入與說明41 第二節 契比雪夫模型的實證結果42 一、模型的配適度42 二、平滑度50 三、模型配適出的即期利率和遠期利率52 四、因素分析59 第五章 結論與建議61 第一節 實證結論61 一、利率累加函數(interest cumulator)61 二、模型的配適力61 三、平滑度63 四、利率期限結構63 第二節 建議64 一、模型特質的探討64 二、參數的選取65 三、樣本的選取65 四、模型的預測性66 參考文獻67 附錄一 本研究所選取的公債樣本資料72 附錄二 利用契比雪夫折現配適模型所估出的參數76 附錄三 利用契比雪夫折現配適模型所估出的參數(續)83
 參考文獻國內文獻部分期刊：1. 林慧貞與李賢源，「最大平滑度遠期利率曲線配適模型之在探討」，中國財務學刊(journal of financial studies)，第6卷第五期，(民國87年7月)，46頁。2.李賢源與謝承熹，「以分段三次指數函數及非線性最適化技巧配適-台灣公債市場之利率期限結構」，管理與系統，第五卷，第二期，(民國87年7月)，277-290頁。3.蔣松原，「建構台灣市場殖利率曲線」，貨幣觀測與信用評等，民國89年3月，99-119頁。論文：4.李樹仁，「建構實證利率期限結構之研究-條樣函數的應用」，台灣大學商學研究所未出版之碩士論文，民國八十三年六月。5.吳秉儒，「日本國債利率期限結構估計之實證研究」，台灣科技大學管理技術研究所企業管理學程未出版之碩士論文，民國八十五年六月。6.林嘉生，「台灣公債殖利率曲線之估計」，台灣大學財務金融研究所未出版之碩士論文，民國八十六年六月。書籍：7.Gerald Wheatly著，劉睦雄與張任業譯，應用數值分析，台北圖書有限公司，民國七十九年。國外文獻部分Journal ：1. Adams, K.J. and D.R. Van Deventer (1994), “Fitting Yield Curves and Forward Rate Curves with Maximium Smoothness”, Journal of Fixed Income, June, pp.52-62.2. Babbs, S.H. (1990), “ The Term Structure of Interest Rates”, PhD Thesis, London University.3. Barone, Emilio, Domenico Cuoco, and Emerico Zautzik (1991), “Term Structure Estimation Using the Cox, Ingersoll, and Ross Model：The Case of Italian Treasury Bonds”, Journal of Fixed Income1, pp.87-95.4. Bradley, S.P. and D.B. Crane (1973), “Management of Commercial Bank Government Security Portfolios：An Optimization Approach Under Uncertainty”, Journal of banking research, spring, pp18-30.5. Brown, R.H. and S.M. Schaefer (1994), “The Term Structure of Real Interest Rates and the Cox, Ingersoll, and Ross Model”, Journal of Financial Economics 35, pp.3-42.6. Brown, S.J. and P.H. Dybvig (1986), “The Empirical Implications of the Cox, Ingersoll, Ross Theory of The Term Structure of Interest Rates”, The Journal of Finance, Vol.41, pp617-630.7. Brennan, Michael J., and Schwartz, and Eduardo S. (1979), “A Continuous Time Approach to the pricing of Bonds”, Journal of banking and Finance, Vol.3, pp.133-155.8. Carleton W.T. and I.A. Cooper, (1976) “Estimation and Uses of the Term Structure of Interest Rates”, The Journal of Finance, Vol.31, No.4, pp1067-1083.9. Carr, J.L., P.J. Halpern, and J.S. McCallum (1974), “Correcting the Yield Curve : A Re-Interpretation of the Duration Problem”, The Journal of Finance, Vol. 29, No. 4, pp. 1287-1294.10. Chambers, D.R., W.T. Carleton, and D.W. Waldman (1984), “Á New Approach To Estimation of the Term Structure of Interest Rates”, Journal of Financial and Quantitative Analysis, Vol. 19, No. 3, pp.233-251.11. Cohen, K.J., R.L. Krammer, and W.H. Waugh (1966), “Regression Yield Curves for U. S. Government Securities”, Management Science, No. 4, December, pp. 168~ 175.12. Cox, J.C., J.E. Ingersoll, and S.A. Ross (1985a), “An Intertemporal General Equilibrium Model of Asset Prices”, Econometric, Vol.53, No.2, pp363-384.13. Cox, J.C., J.E. Ingersoll, and S.A. Ross (1985b), “A Theory of the Term Structure of Interest Rates”, Econometrica, Vol.53, No.2, pp. 385-407.14. Dothan L. (1978), “On the Term Structure of Interest Rates”, Journal of Financial Economics 6, pp. 59-69.15. Durand (1942), Basic Yields of Corporate Bonds, New York National Bureau of Economic Research.16. Echols, Michael E. and Jan Walter Elliott (1976), “A Quantitative Yield Curve Model for Estimating the Term Structure of Interest Rates”, Journal of Financial and Quantitative Analysis, March, pp. 233-251.17. Ferguson, R. and S. Raymar, (1998), “A Comparative Analysis of Several Popular Term Structure Estimation Models”, Journal of Fixed Income, March, pp.17-33.18. Fisher, Lawrence and Roman Weil (1971), “Coping with the Risk of Interest Rate Fluctuations: Returns to Bondholders from Naïve and Optimal Strategies”, Journal of Business, Vol. 44, Oct, pp.408-432.19. Heath, D., R. Jarrow, and A. Morton (1992), “Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claims Valuation”, Econometrica, Vol. 60, No.1, pp. 77-105.20. Ho, T.S.Y. and S.B. Lee (1986), “Term Structure Movements and Pricing Interest Rate Contingent Claim”, The Journal of Finance, Vol. 41, No. 5, pp.1011-1029.21. Hull, J. and A. White (1990), “Pricing Interest Rate Derivative Securities”, Review of Financial Studies, Vol. 3, No. 4, pp.573-59222. Langetieg, T.C. and J.S. Smoot (1989), “Estimation of the Term Structure of Interest Rates”,Res. Fin. Serv.1, pp181-222.23. Lin, B.H. (1999), “Fitting the Term Structure of Interest Rates For Taiwanese Government Bonds”, Journal of Multinational Financial Management 9,pp.331-352.24. Lin, B.H. and D.A. Paxson, D.A. (1993), “Valuing The New-issue Quality Option In Bond Futures”, Rev. Futures Mark, Vol. 12, No. 2, pp.349-388.25. Livingston, M. and J. Caks (1977), “A ‘Duration’ Fallacy”, The Journal of Finance, Vol. 32, No. 1, pp. 185-187.26. McCulloch, J.H. (1971), “Measuring the term structure of interest rates”, Journal of Business 44, pp.19-3127. McCulloch, J.H. (1975), “The tax-adjusted yield curve”, The Journal of Finance, Vol. 31, No.3, pp.811-830.28. Munnik, F.J. and Schotman, P.C. (1994), “Cross-section versus Time Series Estimation of Term Structure Models: Empirical Results from Dutch Bond Market”, Journal of Banking & Financial 18, pp.997-1025.29. Nelson, C.R. and A. F. Siegel (1987), “Parsimonious Modeling of Yield Curve”, Journal of Business, Vol. 60, No. 4, pp.473-489.30. Pham, T.M. (1998), “Estimation of Term Structure of Interest Rates：An International Perspective”, Journal of Multinational.Financial Management 8, pp.265-283.31. Powell, M.J.D. (1981), Approximation Theory and Methods, Cambridge University Press.32. Rose, D. and W.E. Schworm (1980), “Measuring the Term Structure of Prices for Canadian Federal Government Debt.” Discussion paper no.08-81, The University of British Columbia.33. Schaefer, S.M. and E.S. Schwartz (1984), “A Two Factor Model of the term Structure: An Approximate Analytic Solution”, Journal of Financial and Quantitative Analysis 19, pp413-424.34. Shea, G.S. (1985), “Interest Rate Term Structure Estimation with Exponential Splines : A Note”, The Journal of Finance, Nol. 40, No. 1, pp. 319-325.35. Steeley, J.M. (1991), “Estimating the Gilt-edged Term Structure Date：Basis-splines and Confidence Intervals”, Journal of business & Finance Accounting 18(4), 513-529.36. Vasicek, O.A. and Fong H.G.(1982), “ Term Structure Modeling Using Exponential Splines”, Journal of Finance, Vol. 37, No. 2, pp.339-356.37. Vasicek, Oldrich (1977), “An Equilibrium Characterization of the Term Structure”, Journal of Financial Economics 5, pp,177-188.Book ：38. J. Douglus. Faires & Richard Burden., (1998) Numerical Methods-2nd ed., Brooks publishing company.39. Kmenta, J., (1971) Elements of Econometrics, NewYork：MacMillan Publishing company.
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 台灣公債市場殖利率曲線之估計 2 日本國債利率期間結構估計之實證研究 3 建構實證利率期限結構之研究：樣條函數的應用 4 台灣公債市場利率期限結構之估計 5 精確度、平滑度與利率期限結構估計 6 台灣公債市場利率期限結構之估計 7 錯價交易策略在公債市場之實證 8 應用GeneralizedM-vector模型於台灣公債市場免疫策略之實證 9 利率曲線變動與債券投資策略 10 臺灣利率期限結構預測與交易策略之研究 11 國內金融機構對上市櫃公司信用放款訂價之探討 12 以熵理論進行國內政府公債市場整合度分析 13 配適台灣公債市場利率期限結構(非均勻及非週期二維B-Spline曲線應用) 14 利率期限結構之平滑函數估計

 無相關期刊

 1 配適台灣公債市場利率期限結構(非均勻及非週期二維B-Spline曲線應用) 2 以投資組合保險法評估台灣開放型共同基金之績效研究 3 台灣上市公司策略聯盟宣告對股東財富之衝擊 4 報紙推薦資訊對股價行為影響之研究 5 研發效率評估之資料包絡分析法實證研究--以主導性新產品開發計畫為例 6 行銷通路成員激勵影響因素之探討與實證 7 行銷通路成員合作程度影響因素之探討－整合性觀念架構與實證 8 B-to-C電子商務之研究:交易成本理論之應用 9 內隱知識擷取方法在知識擷取廣度及深度之比較研究-以碩士論文寫作為例 10 網路興起對市場區隔變數衝擊之研究-以網路銀行為例 11 全球資訊產業組織採購行為暨認知差異之研究---以全球顯示器產業為例 12 運用實質選擇權評估軟體投資專案之研究 13 量販店建築避難安全性分析研究 14 開口部設計對室內流場之影響─以國民小學教室單元為例 15 台北市地震後火災延燒研究--日治與光復初期街廓之延燒情境分析

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室