跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/11 04:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄒丹妮
研究生(外文):Tan-Ni Tsou
論文名稱:應用適應性可變結構控制於氣壓-壓電精密定位伺服系統之研究
論文名稱(外文):Adaptive Variable Structure Control for Pneumatic-Piezoelectric Hybrid Positioning System
指導教授:江茂雄江茂雄引用關係
指導教授(外文):Mao-Hsiung Chiang
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:工程技術研究所自動化及控制學程
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:78
中文關鍵詞:氣壓伺服系統壓電致動器自調式適應控制可變結構控制適應性可變結構控制最佳切換平面位置控制
外文關鍵詞:pneumatic servo systemPZTself-tuning adaptive controlvariable structure controladaptive variable structure controloptimal switching surfaceposition control
相關次數:
  • 被引用被引用:15
  • 點閱點閱:750
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氣壓致動器具有清潔、質輕、易於維護及較低成本等優點,廣泛地被應用在自動化系統、半導體及光電製程設備等。由於氣體具高可壓縮性,使得氣壓伺服系統之參數會因溫度、壓力、摩擦力、洩漏、外界干擾或工作點等因素而變化,為非線性時變系統,且存在數學模型之不確定性,使得若採用傳統控制器之氣壓伺服定位系統控制精度受限。
本文以PC-based控制器發展「氣壓-壓電混合精密定位系統」,由於壓電致動器具有質輕、體積小、響應快及高解析度等優點,故以氣壓缸進行大衝程之粗定位,且同時以壓電致動器進行小衝程之精密定位,形成一二輸入單輸出(dual-input single-output, DISO)之控制系統,以壓電致動器補償傳統氣壓伺服定位系統控制精度不足之缺點。
在本文中,控制策略採用適應性滑動模式控制理論,發展氣壓伺服位置控制器,使控制器具有自調式適應控制良好之參數變動適應性,能線上(on-line)即時調整參數,得到滑動模式控制之最佳切換平面,減緩滑動模式控制所造成之振顫(chattering)現象。而壓電致動器具有高響應之特性,因此在採用PID控制即可得令人滿意之結果。
實驗證實,適應性滑動模式控制確能減緩滑動模式控制振顫現象,使氣壓伺服定位系統同時具高強健性及適應性,提高控制精度。而結合壓電致動器,確能補償氣壓伺服定位精度不足之缺點,達到更精確之定位效果。
Pneumatic systems are extensively applied in automatic systems, semiconducting or opto-electrical equipments because of the advantages such as cleanliness, lightness and easy maintainance. The system parameters of pneumatic servo system can be changed by temperature, pressure, friction, leakage, disturbance and operation point. Therefore, pneumatic servo systems are non-linear time-varying systems with uncertainties. So that they can’t achieve precision positioning control.
In this thesis, a pneumatic-PZT hybrid positioning system is developed based on a PC-based controller. The pneumatic cylinder serves to position in coarse stroke and the PZT actuator to accurate position into fine stroke. The PZT actuator is used in this paper to compensate the pneumatic servo system’s disadvantages to achieve a high precision dual-input single-output positioning system.
The controller of the pneumatic positioning system is designed by adaptive variable structure control theorem. This control strategy combines self-tuning control with variable structure control. Hence, the system’s parameters can be adjusted on-line to get an optimal switching surface, which can reduce the chattering phenomenon of the traditional variable structure control system. The PZT actuator has the ability of high-response, so a PID position controller is used.
The developed control strategies are implemented in the pneumatic-PZT hybrid positioning system experimentally. The test results show that the positioning accuracy can be improved to which is impossible to be achieve with the traditional pneumatic servo system.
第一章緒論1
1.1 研究動機1
1.2 文獻回顧3
1.2.1 氣壓系統之回顧3
1.2.2 壓電致動器之回顧4
1.2.3 控制理論之回顧4
1.3 本文架構6
第二章氣壓-壓電精密定位實驗模組之架構與建立8
2.1 氣壓伺服系統8
2.2PZT壓電致動器9
2.2.1PZT壓電材料之簡介9
2.2.2PZT壓電致動器之優缺點12
2.2.3PZT壓電致動器之磁滯與蠕動現象13
2.3 氣壓-壓電精密定位系統15
2.4 實驗設備16
2.5 伺服氣壓缸系統之數學模式19
2.5.1 氣壓伺服閥19
2.5.2 流經閥之質量流率計算19
2.5.3 氣壓缸充氣及排氣程序21
2.5.4 負載動態23
2.5.5 氣壓系統之線性化分析24
2.5.6 氣壓伺服系統之開迴路轉移函數26
第三章控制理論28
3.1 可變結構控制理論28
3.1.1 切換函數的設計31
3.1.2 可變結構控制器的設計33
3.2 適應控制理論35
3.2.1 系統數學模式表示法36
3.2.2 最小平方參數估測法37
3.2.3 遞迴最小平方參數估測法38
3.3 適應性滑動模式控制理論41
第四章控制器設計44
4.1 系統鑑定44
4.2 控制器之設計與分析50
4.2.1 可變結構控制器之設計50
4.2.2 適應律之設計52
第五章氣壓-壓電精密定位系統實驗54
5-1 氣壓伺服定位54
5.1.1 可變結構控制實驗結果54
5.1.2 適應性可變結構控制實驗結果62
5.2 壓電精密定位67
5.3 氣壓-壓電精密定位68
5.4 綜合比較72
第六章結論與建議76
參考文獻78
【1】B. W. Anderson, “The Analysis and Design of Pneumatic Systems”, John Willey & Sons Inc. New York, 1967
【2】Toshiharu Kagawa, “Heat Transfer Effects on the Frequency Response of a Nozzle Flapper”, ASME, Vol.107, pp.332-336, 1985
【3】McCloy & Martin, “Control of Fluid Power”, 2nd., Ellis Horwood Limited, 1980
【4】F. Blackburn, G. Reethof, J. L. Shearer, “Fluid Power Control”, M.I.T. Press, 1960
【5】H. E. Merrit, “Hydraulic Control System”, John Willey & Sons Inc., New York, 1967
【6】J. J. Shearer, “Continuous Control of Motion with Compressed Air”, ScD, Thesis, Massachusetts Institute of Technology, 1954
【7】J. J. Shearer, “The Study of Pneumatic Process in the Continuous Control of Motion with Compressed Air-I”, ASME Trans., pp. 233-242, 1956
【8】C. R. Burrows, “Effect of Position on the Stability of Pneumatic Servo Mechanisms”, J. Mech. Engrs. Sci., Vol. 11, No. 6, pp. 615-616, 1969
【9】C. R. Burrows and C. R. Webbs, “Further Study of a Low-pressure On-off Pneumatic Servo — Mechanism”, Proc. Instr. Mech. Engrs., Vol. 184, pp. 849-857, 1970
【10】D. E. Bowns, and R. L. Ballard, “Digital Computation for Analysis of Pneumatic Actuator System”, Proc. Instr. Mech. Engrs., 186, pp. 881-889, 1972
【11】P. C. Chiu, and Leung, T.P., “Modeling and Microcomputer Control of a Nonlinear Pneumatic Servomechanism”, Trans. Inst. Measurement and Control, Vol.10, pp.71-78, 1988
【12】R. H. Weston, P. R. Moore, T. W. Thatcher, and G. Morgon, , “Computer Controlled Pneumatic Servo Drives”, Proc. Instn. Mech. Engrs., Vol.198B, pp.275-281, 1984
【13】P. R. Moore and T. W. Thatcher, “Compensation in Pneumatically Actuated Servomechanisms”, Trans. Inst. Measurement and Control, Vol.7, pp. 238-244, 1985
【14】T. Noritsugu, “Electro-Pneumatic Feedback Speed Control of a Pneumatic Motor. Part I : With an Electro-Pneumatic Proportional Valve”, Journal of Fluid Control, pp. 17-37, 1987
【15】T. Noritsugu, “Development of PWM Mode Electro-Pneumatic Servomechanism. Part II : Position Control of a Pneumatic Cylinder”, Journal of Fluid Control, Vol.66, pp. 65-80, 1987
【16】許進順, “氣壓系統之快速定位控制”, 國立清華大學動力機械工程研究所碩士論文, 1994
【17】羅年良, “氣壓缸位置與壓力伺服控制系統之研究”, 國立成功大學機械工程研究所碩士論文, 1999
【18】J. M. Han, T. A. Adriaens, L. de Koning Willem, and Reinder Banning, “Modeling Piezoelectric Actuators”, IEEE/ASME Transactions on Mechatronics, Vol. 5, No. 4, 2000
【19】C. James Li, Homayoon S. M. Beigi, Shengyi Li and Jiancheng Liang, “Nonlinear Piezo-Actuator Control by Learning Self-Tuning Regulator”, ASME, Journal of Dynamic, Systems, Measurement, and Control, Vol. 115, pp. 720-723,1993
【20】Roberto Oboe and Alessandro Beghi, “Modeling and Control of a Dual Stage Actuator Hard Disk with Piezoelectric Secondary Actuator”, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 138-143, 1999
【21】T. Higuchi, Y. Yamagata, K. Furutani and K. Kudoh, “Precise Positioning Mechanism Utilizing Rapid Deformation of Piezoelectric Elements”, IEEE, pp. 222-226
【22】Mochael Goldfarb and Nikola Celanovic, “Modeling Piezoelectric Stack Actuators for Control of Micromanipulation”, IEEE, pp69-79, 1997
【23】Mark Versteyhe, Domainiek Reynaerts and Hendrik Van Brussel, “A Rigid and Accurate Piezo-stepper Based on Smooth Learning Hybrid Force-Position Controlled Clamping”, IEEE International Conference on Robotics & Automation, pp. 3059-3064, 1998
【24】Mark Versteyhe, Dominiek Reynaerts and Hendrik Van Brussel, “Hybrid Force-Position Control of Clamping with a Piezo-Stepper”, IEEE Control Systems, pp. 31-39, 1999
【25】劉永田與通口俊郎, “壓電元件與空壓缸所組成之高精度長行程驅動器”, 2001中華民國自動控制研討會,TIC100產學技術發展研討會論文集, pp. 306-311, 2001
【26】U. Itkis, “Control Systems of Variable Structure”, John Wiley & Sons, 1976
【27】Vadim I. Utkin, “Sliding Modes in Control and Optimization”, Spring-Verlag Berlin Heidelberg New York, 1992
【28】陳永平, “可變結構控制設計”, 全華科技圖書股份有限公司, 1999
【29】Astrom, K. J. and B. Wittenmark, “Adaptive Control”, Addison Wesley, 1989
【30】馮純伯與史維, ”自適應控制”, 1985
【31】P. E. Wellstead and M. B. Zarrop, “Self-tuning Systems — Control and Signal Processing”, John Wiley & Sons, 1991
【32】Petros A. Ioannou and Jing Sun, ”Robust Adaptive Control”, Prentice-Hall, 1996
【33】Kuo-Kai Shyu & Hsin-Jang Shieh, “A New Switching Sliding-mode Speed Control for Induction Motor Drive Systems”, IEEE Transactions on Power Electronics, Vol. 11, No. 4, pp. 660-667, July, 1996
【34】Li-Wen Chen and G. P. Papavassilopoulos, “Robust Variable Structure and Switching -Σ Adaptive Control of Signal-Arm Dynamics”, IEEE Transactions on Automatic Control, Vol. 39, No. 8, pp. 1621-1626, August, 1994
【35】Masugi KAMINAGA & J. Karl HEDRICK, “Adaptive Sliding Mode Control in the Presence of Satuation Tire Forces”, JSME, Series C, Vol. 42, No. 2, pp.281-286, 1999
【36】Tarek M. M. Nasab, Saudi Oger, Riyadh, Saudi Arabia, “Adaptive Variable Structure Control System with Free Chattering”, IEEE, pp. 1300-1305, 1999
【37】S. Z. Sarpurk, Y. Istefanopulos, and O. Kaynak, “On the Stability of Discrete-time Sliding Mode Control Systems”, IEEE Trans. Automat. Contr., Vol. 32, No. 10, pp. 930-932, 1987
【38】K. Furuta, “VSS Type Self-Tuning Control”, IEEE Transactions on Industrial Electronics, Vol. 40, No. 1, pp. 37-44, February, 1993
【39】Pan-Mook Lee & Jun-Ho Oh, “Improvements on VSS-Type Self-Tuning Control for a Tracting Control”, IEEE Transactions on Industrial Electronics, Vol. 45, No. 2, pp. 319-325, Arial, 1998
【40】Xinkai Chen, Toshio Fukuda, “Robust Adaptive Quasi-sliding Mode Controller for Discrete-time systems”, System & Control Letters, Vol. 35, pp. 165-173, 1998
【41】C. Y. Chan, “Discrete Adaptive Sliding-mode Tracking Controller”, Automatica, Vol. 33, No. 5, pp. 99-1002, 1997
【42】Feng Zhao and Vadim I. Utkin, “Adaptive Simulation and Control of Variable-structure Control Systems in Sliding Regimes”, Automatica, Vol. 32, No. 7, pp. 1037-1042, 1996
【43】Shih-Liang Jung, Hsiang-Sung Huang and Ying-Yu Tzou, “Self-Tuning Discrete Sliding Mode Control of a Closed-Loop Regulated PWM Inverter with Optimal Sliding Surface”, IEEE, Vol. 2, pp. 1506-1512, 1996
【44】K. Furuta & M. Morisuda, “Implementation of Sliding Mode Control by a Digital Computer”, IECON, pp. 453-458, 1988
【45】K. Furuta & K. Kosuge, “VSS Type Self-Tuning Control of Direct-Drive Motor”, IEEE, pp. 281-286, 1989
【46】Pan-Mook Lee, Seok-Won Hong, Yong-Kon Lim, Chong-Moo Lee, Bong-Hwan Jeon, and Jong-Won Park, “Discrete-Time Quasi-Sliding Mode Control of an Autonomous Underwater Vehicle”, IEEE Journal of Oceanic Engineering, Vol. 24, No. 3, pp. 388-395, July, 1999
【47】D. Q. Zhang & G. X. Guo, “Discrete-Time Sliding Mode Proximate Time Optimal Seek Control of Hard Disk Drive”, IEE Proc. Control Theory Appl., Vol. 147, No. 4, pp. 440-446, 2000
【48】陳俊生, “發展以史密斯預測器為基礎之強健性 控制器及其應用於壓電致動器磁滯補償之研究”, 國立中正大學機械工程研究所碩士論文, 2000
【49】Piezomechanik. Dr. Lutz Pickelmann GmbH, Operating manual for SQV3/500 and PST500/10/60.
【50】John Y. Hung, Weibing Gao, James C. Hung, “Variable Structure Control : A Survey”, IEEE Transactions on Industrial Electronics, Vol. 40, No. 1, February, 1993
【51】M. A. Ghazy and A. A. EI-Samahy, “Adaptive Discrete Variable Structure Control”, IEEE, pp. 1294-1299, 1999
【52】韓曾晉, “適應控制系統”, 科技圖書股份有限公司, 1992
【53】Gene F. Franklin, J. David Powell and Michael L. Workman, “Digital Control of Dynamic Systems”, Addision-Wesley, pp. 222-225, 1990
【54】Burrows, C. R. Webbs, “Simulation of an On-off Pneumatic Servo”, Proc. Inst. Mech. Engrs., Vol. 182, pp. 631, 1968C.R. Burrons and C.R.Webb, “Simulation of An On-off Pneumatic Servo”, Proc. Inst. Mech. Engrs., 182, 1967-1968, pp.631
【55】G. Bartolini, A. Ferrara and V. I. Utkin, “Adaptive Sliding Mode Control in Discrete-time Systems”, Automatica, Vol. 31, No. 5, pp. 769-773, 1995
【56】J.H. Horlock and W.A. Woods, “The Thermodynamics of Charging and Discharging Process”, Proc. Inst. Mech. Engrs., 1965-66, 180, (Pt 3)
【57】J. J. Slotine & S. S. Sastry, “Tracting Control of Nonlinear Systems Using Sliding Surface with Application to Robot Manipulators”, Int. J. Control, Vol. 38, No. 2, pp465-492, Feb, 1983
【58】Katsuhiko Ogata, “Discrete-time Control Systems”, Prentice-Hall International, Inc., 1995
【59】P.E.R.A, report, “Dynamics Behaviour of Double Acting Air Cylinders”, No. 135, Feb. 1965
【60】Steve J. Schroeck, William C. Messner, and Robert J. McNab, “On Compensator Design for Linear Time-Invariant Dual-Input Single Output Systems”, IEEE/ASME Transactions on Mechatronics, Vol. 6, No. 1, pp. 50-57, 2001
【61】Weibing Gao and James C. Hung, “Variable Structure Control of Nonlinear Systems : A New Approach”, IEEE Transactions on Industrial Electronics, Vol. 40, No. 1, 1993
【62】W. J. Wang and G. H. Wu, “Variable Structure Control Design on Discrete-time System from Another Viewpoint”, Control-Theory and Advanced Technology, Vol. 8, No. 1, pp 1-16, Mar., 1992
【63】謝銘良, “可變結構之氣壓伺服系統”, 國立清華大學動力機械工程研究所碩士論文, 1990
【64】許家菖, “可變結構開關追蹤系統”, 國立清華大學動力機械工程研究所碩士論文, 1991
【65】王安培, “氣壓伺服強健性控制之研究”, 國立清華大學動力機械工程研究所博士論文, 1991
【66】曾釋毅, “伺服氣壓缸位置自調式適應控制之研究”, 國立成功大學機械工程研究所碩士論文, 1991
【67】曾釋毅, “自調式PID控制伺服氣壓缸位置之研究”, 國立成功大學機械工程研究所碩士論文, 1992
【68】蔡明璋, “自伺服氣壓缸位置模式追蹤適應控制之研究”, 國立成功大學機械工程研究所碩士論文, 1993
【69】呂有勝, “滑動模式控制於非線性伺服系統之應用”, 國立清華大學動力機械工程研究所博士論文, 1995
【70】蔡坤諭, “深次微米三軸精密定位平台之伺服設計”, 國立台灣大學機械工程研究所碩士論文, 1997
【71】王琮右, “ 控制於電液負載感測系統之研究”, 國立台灣科技大學工程技術所自動化及控制學程碩士論文, 2000
【72】黃宜正和陳保元, “即時疊代式學習控制器設計應用於壓電致動器之精準運動”, 2001中華民國自動控制研討會,TIC100產學技術發展研討會論文集, pp. 319-323, 2001
【73】許溢适, “壓電/電歪致動器”, 文笙書局股份有限公司, 1996
【74】呂淮熏, 郭興家, 蘇寶林, “氣壓工程學”, 全華科技圖書股份有限公司, 1998
【75】趙清風, “進階自動控制設計-使用MATLAB程式語言”, 全華科技圖書股份有限公司, 2000
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊