跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/10 22:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳俊榮
研究生(外文):Jun-Rong Chen
論文名稱:雙結晶性高分子混摻系統其結構及流變性質之研究
論文名稱(外文):A Study of Structural and Rheological Properties of Immiscible Binary Crystalline Polymer Blends
指導教授:黃慶怡
指導教授(外文):Ching-I Huang
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:工程技術研究所材料科技學程
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:208
中文關鍵詞:結晶性高分子混摻廣角X光繞射小角X光散射流變
外文關鍵詞:crystalline polymerblendsWAXDSAXSrheology
相關次數:
  • 被引用被引用:3
  • 點閱點閱:368
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本研究主要是利用即時同步的廣角X光繞射/小角X光散射配合雙平行板流變儀對於雙結晶混摻系統:對排聚丙烯(syndiotactic polypropylene, sPP)及乙烯丙烯無規則共聚物(poly ethylene-propylene random copolymer, PEP)之聚摻合物(sPP/PEP),觀察其結構型態以及流變性質。sPP熔點大約132℃,PEP則為168℃。
從廣角X光繞射實驗中發現在137℃等溫結晶時僅有PEP產生結晶,在98℃及80℃時兩者會產生個別的結晶。在等溫結晶過程中,sPP/PEP聚摻合體中之整體結晶度將隨著等溫結晶時間增加而上升,而純PEP的整體結晶度明顯高於純sPP,故sPP/PEP聚摻合體中若PEP含量愈多,整體結晶度也會愈高。在純PEP中加入一點sPP,在等溫結晶初期將會促進其結晶快速成長。在昇溫熔融過程sPP/PEP聚摻合體中之整體結晶度將會隨著溫度升高而下降,等到整體結晶度為零時,即為熔點。在sPP/PEP聚摻合體中若PEP含量愈多,熔點則愈高,而sPP/PEP聚摻合體中PEP之個別熔點亦有此現象,但sPP之熔點卻與sPP之量無關。
從小角X光散射實驗中發現在等溫結晶時,無論整體結晶度是否達成一穩定值,結構尺寸均會達成一穩定值;在高溫僅有PEP結晶之狀態下,加入sPP將提高sPP/PEP聚摻合體的所有尺寸,但幅度不大;當溫度降至兩者都結晶之溫度下,由於等溫結晶過程中包含了一直成核以及嵌入型層狀結構,使得結構尺寸結果變得較為複雜。例如在80℃時組成5/5之結構尺寸均呈現一極大值,此乃由於異質成核所形成之層狀結構比例增加,導致結晶尺寸、非晶尺寸以及長週期均呈現一極大值。然而等溫結晶過程結構形成之機制可以反應在熔融過程。在熔融過程中長週期與結晶尺寸隨著溫度升高而上升此時為嵌入型之sPP結晶層熔融,而在sPP熔點附近長週期與結晶尺寸突然大幅升高,此乃因為嵌入型之sPP結晶層已完全熔融,剩下異質成核之結晶層;爾後異質成核之結晶層開始熔融,造成結晶尺寸降低,等到異質成核之sPP完全熔融,PEP形成嵌入型層狀結構開始熔融,結晶尺寸又隨之而升高。
關於流變性質的研究,我們在穩態實驗中利用加成定律觀察到正負偏差相轉換之溫度,進而決定了binodal line;在動態實驗方面,我們針對溫度與組成做了一系列動態黏彈性之討論。

Abstract
We study both the crystallization and melting behaviors of binary crystalline syndiotactic polypropylene (sPP) and ethylene-propylene random copolymer (PEP) blends by simultaneous time-resolved synchrotron small-angle X-ray scattering (SAXS), wide-angle X-ray diffraction (WAXD) and parallel-plate remoter experiments. With the aid of WAXD experiment, we examine the effects of temperature and polymer composition on the crystalline structures as well as the bulk crystallinity of both components. As expected, the crystal structures of both sPP and PEP are independent of crystallization temperature and polymer composition. When the crystallization temperature decreases, the crystallinity of each component increases. For sPP/PEP blends at various compositions quenched to the same temperature, the crystallinity at the late stage of crystallization process increases with the addition of PEP. This is due to the fact that pure PEP has higher crystallinity than pure sPP for our samples studied here. However, the results at the early stage of the crystallization process reveal that even a few amount of sPP added to PEP proceeds the crystallization process.
With SAXS, we study the effects of temperature and polymer composition on the long period, crystalline and amorphous layer thickness. When the blend samples are quenched to a temperature such that only PEP can crystallize, we observe that all of the structural sizes increase just a bit as the amount of sPP increases. This reveals that most of the amorphous sPP added to the samples are expelled outside the PEP lamellar stacks, such that the volume fraction of lamellar stacks decreases with the addition of sPP. When the crystallization temperature is lower such that both sPP and PEP can crystallize, we propose that both mechanisms of lamellae insertion and heterogeneous nucleation occur simultaneously during the isothermal crystallization process. In particular, when the weight ratio of sPP/PEP is in the range of 5/5 and 3/7, most of the lamellae are formed by the heterogeneous nucleation mechanism such that the long period, the crystalline layer thickness, as well as the amorphous layer thickness reach a maximum. During the melting process, we observe that both long period and crystalline layer thickness increase abruptly and then decrease sharply when the temperature is close to the sPP melting point. This is due to the fact that with increasing temperature, the formed sPP lamellae by the insertion model are smaller and melt first; therefore, the lamellar size keeps increasing. As temperature keeps increasing such that all of the larger sPP lamellae formed by the heterogeneous nucleation melt completely, the lamellar size decreases and reaches the value of PEP lamellae. As temperature increases further and reaches the melting point of PEP, both long period and crystalline layer thickness increases, as expected.
In the analysis of rheological behavior, we use the additive rule to compare the zero-shear viscosity from both experiment and theory. We determine the binodal line of sPP and PEP blends.

目錄
中文摘要………………………………………………………………..Ⅰ
英文摘要………………………………………………………………..Ⅲ
誌謝……………………………………………………………………..Ⅴ
目錄……………………………………………………………………..Ⅶ
圖表目錄………………………………………………………………..Ⅹ一、緒論…………………………………………………………………1
1.1 前言…………………………………………………………….1
1.2研究背景與動機………………………………………………..3
二、 實驗部分…………………………………………………………..10
2.1 樣品製備…………………………………………………….10
2.2 實驗方法…………………………………………………….10
2.2.1 廣角X光繞射/小角X光散射(WAXD/SAXS)…………10
2.2.2 流變儀…………………………………………………….13
2.2.2-1 穩態流變試………………………………………...14
2.3.2-2 動態流變測試……………………………………...15
2.4 實驗原理與分析…………………………………………...15
2.4.1 廣角X光繞射(WAXD)……………………………….15
2.4.2 小角X光散射(SAXS) ………………………………..20
2.4.3 高分子熔融流變行為………………………….…….31
2.4.3-1 穩態剪切黏度…………………………………….31
2.4.3-2 動態流變行為…………………………………...36
三、 結果與討論………………………………………………………38
3.1 廣角X光繞射(WAXD)………………………………….38
3.1.1 137℃等溫結晶………………………………………38
3.1.2 98℃等溫結晶………………………………………41
3.1.3 80℃等溫結晶………………………………………48
3.1.4 80℃等溫結晶後加熱至熔融………………………53
3.2 小角X光散射(SAXS)………………………………….59
3.2.1 137℃等溫結晶………………………………………59
3.2.2 98℃等溫結晶………………………………………..80
3.2.3 80℃等溫結晶………………………………………118
3.2.4 等溫結晶實驗之整理與討論………………………131
3.2.5 80℃等溫結晶後加熱至熔融………………………148
3.3 高分子熔融流變行為………………………………….172
3.3.1 穩態剪切黏度………………………………..…….172
3.3.2 動態流變行為………………………………..…….179
四、 結論……………………………………………………201
4.1 廣角X光繞射(WAXD)……………………………….201
4.2 小角X光散射 (SAXS)…………………………………201
4.3 高分子熔融流變行為………………………………….203
4.3.1 穩態剪切黏度………………………………………203
4.3.2 動態流變行為………………………………………203
五、 參考文獻………………………………………………………..205

五、 參考文獻
1.邱顯堂 高分子物性 國立編譯館 台北 民國87年
2.劉德滿 化工技術 第8卷 第4期 民國73年
3.馬德柱等 高聚合物的結構與性能 第二版 科學出版社 北京 (1999)
4.曹偉智 碩士論文 淡江大學化工所 民國89年
5.劉士榮 高分子流變學 洪秀婉出版 台北 民國84年
6.J. E. Hillard, Phase Transformations, H. I. Aaronson Ed., American Socienty for Metals: Ohio (1970)
7.C. Silvestre, F. E. Karasz, W. J. MacKnight, and E. Martuscelli, Eur. Polym. J. 23, 745, (1987)
8.T. P. Russell, H. Ito, G. D. Wignall, American Chemical Socienty, 21, 1703, (1988)
9.L. D’Orazio, C. Mancarella, E. Martuscelli, G.Sticotti, J. Materials Sci. 26, 4003, 1991
10.L. D’Orazio, C. Mancarella, E. Martuscelli, G.Sticotti, P. Massari, Polymer, 34, 17, 3671, 1993
11.L. D’Orazio, C. Mancarella, E. Martuscelli, G.Sticotti, R. Ghisellini, J. Appl. Polym. Sci., 53, 387, (1994)
12.S. Nojima, M. Kuroda, S. Sasaki, Polymer Journal, 29, 8, 642, (1997)
13.J. C. Hwang, Chia-Chen Chen, Hsin-Lung Chen, Wen-Chung Ou Yang, Polymer, 38, 16, 4097,(1997)
14.Hsin-Lung Chen, J. C. Hwang, Chia-Chen Chen, Rong-Chung Wang, Der-Ming Fang, Ming-Jer Tsai, Polymer, 38, 11, 2747,(1997)
15.S. Talibuddin, J. Runt, Li-Zhi Liu, B. Chu, Macromolecules, 31, 5, 1627, (1997)
16.Hsin-Lung Chen, Ming-Siao Hsiao, Macromolecules, 31, 19, 6579,(1998)
17.S. Talibuddin, J. Runt, Li-Zhi Liu, B. Chu, Macromolecules, 31, 5, 1627, (1998)
18.Hsin-Lung Chen, Shi-Fang Wang, Tsang-Lang Lin, Macromolecules, 31, 25, 8924, (1998)
19.G. Dreeze, N. Mischenko, M. H. J. Koch, H. Reynaers, G. Groeninckx, Macromolecules, 32, 12, (1999)
20.Hsiu-Jung, Hsin-Lung Chen, Tsang-Lang, Lin, J. S. Lin, Macromolecules, 32, 15,4969, (1999)
21.K. Inomata, Li-Zhi Liu, T. Nose, B. Chu, Macromolecules, 32, 5, 1554, (1999)
22.S. W. Lim, K. H. Lee, C. H. Lee, Polymer, 40, 2837, (1999)
23.Ching-I Huang, Jun-Rong Chen, Submitted to J. Polym. Sci. Polym. Phys. (2001)
24.K. Tashiro, M. M. Satkowski, R. S. Stein, Y. Li, B. Chu, S. L. Hsu, Macromolecules, 25, 6, 1809, (1992)
25.Y. W. Cheung, R. S. Stein, J. S. Lin, G. D. Wignall, Macromolecules, 27, 9, 2520, (1994)
26.Ralf Thomann, Jorg Kressler, Stefan Setz, Chun Wang, Rolf Mulhaupt, Polymer, 37, 13, 2627, (1996)
27.Ralf Thomann, Jorg Kressler, Stefan Setz, Chun Wang, Rolf Mulhaupt, Polymer, 37, 13, 2635, (1996)
28.Li-Zhi Liu, B. Chu, j. P. Penning, R. St. John Manley, Macromolecules, 30, 15, 4398, (1997)
29.Hsin-Lung Chen, Shi-Fang Wang, Polymer, 41, 5157, (2000)
30.Zhi-Gang Wang, Roger A. Phillips, Benjamin S. Hsiao, submitted to J. Polym. Sci. Part B : Polym. Phys. (2000)
31.B. S. Hsiao, K. H. Gardner, D. Q. Wu, B. Chu, Polymer, 34, 19, 3996, (1993)
32.J. J. Aklonis, W. J. Macknight, Introduction to Polymer Viscoelasticity, Wiley, (1983)
33.J. M. Dealy, K. F. Wissbrun, Melt Rheology and Its Role in Plastics Processing, VHR, (1989)
34.新竹同步輻射研究中心簡介
35.Y. Chatani, H. Maruyama, K. Noguchi, T. Asanuma, T. Shiomura, J. Polym. Sci. Part C, 28, 393, (1990)
36.A. J. Lovinger, B. Lotz, D. D. Davis, F. J. Padden, Jr., Macromolecules, 26, 3494, (1993)
37.H. J. Zimmermann, Hoechst, J. Macromol. Sci.-Phy. B32(2), 141, (1993)
38.O. Glatter, O. Kratky, Small angle x-ray scattering, Academic Press, (1982)
39.Ruland, W. J., J. Appl. Crystallogr. 4, 70, (1971)
40.Julia S. Higgins, Henri C. Benoit, Polymers and Neutron Scatteeing, Clarendon Press Oxford, (1994)
41.Debye P.,Bueche A. M., J. Appl. Phys, 20, 518, (1949)
42.J. Brandrup, Polymer Handbook, (1999)
43.C. Santa Cruz, N. Stribeck, H. G. Zachmann, Macromolecules, 24, 5980, (1991)
44.L. R. Utracki, M. R. Kamal, Polym. Eng. Sci., 22, 2, 96, (1982)
45.Y. G. Yanovsky, Polymer Rheology : Theory and Practice, Chapman & Hall, chap3, (1993)
46.廖平喜 高分子流變學 黎明書店 新竹 民國75年
47.Benjamin S. Hsiao, KennCorwin H. Gardner, Dan Q. Wu, Benjamin Chu, Polymer, 34, 19, 3986, (1993)
48.周瑞雯 碩士論文 台灣科技大學工程所材料學程 民國90年

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top