跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/13 04:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林岱儀
研究生(外文):LIN, DAI-YI
論文名稱:無機添加物對鋅電極在氫氧化鉀溶液中鈍化影響之研究
論文名稱(外文):Effects of Inorganic Additives on the Passivation of Zinc in KOH Electrolyte Solutions
指導教授:林俊一林俊一引用關係張裕祺
指導教授(外文):Chun-i, LinYU-CHI CHANG
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:97
中文關鍵詞:鈍化添加劑鋅陽極溶解鋅-空氣電池
外文關鍵詞:PassivationAdditiveZinc anodic dissolutionZinc-air battery
相關次數:
  • 被引用被引用:2
  • 點閱點閱:347
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:1
本研究針對鋅電極,探討添加K2HPO4或KBrO3於KOH溶液中對鋅之陽極溶解及鈍化的影響。就鈍化電位而言,K2HPO4的加入可稍微提昇其鈍化電位,且濃度愈高,效果愈顯著;而KBrO3的加入則對提昇鈍化電位沒有太大的助益,甚至會降低鈍化電位。就陽極溶解速率而言,K2HPO4的加入會降低反應電流;而KBrO3在低濃度時則會稍稍提高鈍化電流值,但整體效果並不明顯。
從溫度效應方面來看,研究的結果顯示鹽膜及鈍化膜皆有所影響,因為添加物加入之後,活化能有所改變。濃度效應方面,K2HPO4的濃度愈高,鈍化電流愈低;另外,Tafel斜率在前半段是隨濃度的增加而增大,後半段則由於膜已生長,Tafel斜率幾乎不受濃度的影響; KBrO3則是在低濃度時,鈍化電流隨濃度的增加而上升,不過,濃度超過臨界值後,鈍化電流反而下降;就KOH濃度效應方面,KOH濃度的提高可降低前半段的Tafel斜率,但對後半段則沒有太大的影響。在流力效應部份,轉速增加,質傳上升,所以電流值提高,Tafel斜率(前半段)降低。
The present experimental study aimed at investigating the effects of additives K2HPO4 and KBrO3 on the anodic dissolution and passivation of zinc in KOH solutions. Adding K2HPO4 raised passivation potential slightly, but resulted in decreasing anodic dissolution rate. Higher concentrations had remarkable effects. Adding KBrO3 didn’t raise passivation potential. The passivation potential decrease, but peak current density increased slightly.
Experimentally, it was found that the activation energy changed with the addition of K2HPO4 and KBrO3. As for the effects of the concentration of additives, the higher the concentration, the lower the peak density. Tafel slopes at lower potentials increased as concentration of K2HPO4 increased. However, Tafel slopes at higher potentials were essentially inpendent of concentration of additives used. The effects of KBrO3 were more complicated. When KBrO3 was lower than acritical value, the peak currents increased with concentration of KBrO3. The variation of Tafel slopes measured in KOH solutions followed a similar pattern as observed in additive-containing system. The effect of rotation rate was also examined. Generally, mass transfer enhanced as rotation rate was increased. The peak current density increased with the rotation rate, but the Tafel slope decreased with increasing rotation rates.
中文摘要…………………………………………………………………….Ⅰ
英文摘要…………………………………………………………………….Ⅱ
致謝………………………………………………………………………….Ⅲ
目錄………………………………………………………………………….Ⅳ
圖表索引…………………………………………………………………….Ⅵ
第一章 緒論…………………………………………………………………1
第二章 文獻回顧……………………………………………………………3
第三章 實驗裝置及方法……………………………………………………13
3.1實驗裝置………………………………………………………………13
3.1.1反應器的設計………………………………………………………13
3.2實驗儀器………………………………………………………………13
3.3實驗藥品………………………………………………………………16
3.4研究方法………………………………………………………………17
3.5實驗步驟………………………………………………………………17
第四章 結果與討論…………………………………………………………24
4.1平板電極部份…………………………………………………………24
4.1.1純KOH溶液…………………………………………………………24
4.1.2KOH溶液+K2HPO4……………………………………………………29
4.1.2.1循環伏安法………………………………………………………29
4.1.2.2準穩態動電位掃描………………………………………………36
4.1.2.2.1溫度效應………………………………………………………36
4.1.2.2.2添加物(K2HPO4)濃度效應……………………………………37
4.1.2.2.3 KOH濃度效應…………………………………………………44
4.1.3 KOH溶液+KBrO3……………………………………………………47
4.1.3.1循環伏安法………………………………………………………47
4.1.3.2準穩態動電位掃描………………………………………………48
4.1.3.2.1溫度效應………………………………………………………48
4.1.3.2.2添加物(KBrO3)濃度效應……………………………………49
4.1.3.2.3 KOH濃度效應…………………………………………………55
4.2旋轉圓盤電極…………………………………………………………56
4.2.1純KOH溶液…………………………………………………………56
4.2.2KOH溶液+K2HPO4……………………………………………………61
4.2.2.1準穩態動電位掃描………………………………………………61
4.2.2.1.1溫度效應………………………………………………………61
4.2.2.1.2添加物(K2HPO4)濃度效應……………………………………62
4.2.2.1.3 KOH濃度效應…………………………………………………64
4.2.2.1.4流力效應………………………………………………………68
4.2.3 KOH溶液+KBrO3……………………………………………………72
4.2.3.1準穩態動電位掃描………………………………………………72
4.2.3.1.1溫度效應………………………………………………………72
4.2.3.1.2添加物(KBrO3)濃度效應……………………………………74
4.2.3.1.3流力效應………………………………………………………77
4.3SEM觀察………………………………………………………………80
第五章 結論…………………………………………………………………84
參考文獻……………………………………………………………………88
附錄A…………………………………………………………………………91
附錄B…………………………………………………………………………92
作者簡介……………………………………………………………………93
授權書………………………………………………………………………94
1.Szczesiniak, B., Z. Brudka and L. Kreja, Meeting Abstracts, Paris, France, Aug.31-Sep.5, 1997; No.280. The Electrochemical Society, Inc.(1997)
2.Müller, S., F. Holzer and O. Hass; Meeting Abstracts, Paris, France, Aug.31-Sep.5, 1997; No.283. The Electrochemical Society, Inc.(1997)
3.Ein-Eli, Y., I. Gektin, J. Goldstein, C. Menachem, Z. Rosenberg, J. Sassen, and R.B Dopp, Meeting Abstracts, Honolulu, Hawaii, Oct.17-22, 1999; No.99, The Electrochemical Society, Inc.(1999)
4.Goldstein, J.R, N. Lapidot and M. Aguf, Meeting Abstracts, 1997; No.255, The Electrochemical Society, Inc.(1997)
5.Paradis, J., D. Belanger and J.-Y. Huot, Meeting Abstracts, Boston, Massachusetts, Nov.1-6, 1998; No.44; The Electrochemical Society, Inc.(1998)
6.Gamburzev, S. and A.J. Appleby, Meeting Abstracts, Boston, Massachusetts, Nov.1-6, 1998; No.45; The Electrochemical Society, Inc.(1998)
7.Müller, S. Müller, F. Holzer and O. Hass, Meeting Abstracts, Boston, Massachusetts, Nov.1-6, 1998; No.46, The Electrochemical Society, Inc.(1998)
8.Cherepy, N.J., R. Krueger and J. F. Cooper; Meeting Abstracts; No.98(1999)
9.Linden, D.(editor), “Handbook of Batteries and Fuel Cells”, 30-2~30-6; McGraw-Hill(1984)
10.Hudson, J., V. Schmidt and D. Lampner, Meeting Abstracts, No.301(1997)
11.Marshall, A., N.A. Hampson and J.S. Drury, J. Electroanal, Chem., Vol.59, 19-32 (1975)
12.Marshall, A., N.A. Hampson and J.S. Drury, J. Electroanal, Chem., Vol.59, 33-40 (1975)
13.Marshall, A., N.A. Hampson, M.P. Saunders and J.S. Drury, J. Electroanal, Chem., Vol.78, 307-311 (1977)
14.Marshall, A., N.A. Hampson, J.S. Drury and J.P.G. Farr, Surface Technology, Vol.8, 149-163 (1977)
15.Morgan, P.C., N.A. Hampson, and D.J. Spiers, Surface Technology, Vol.12, 245-251 (1981)
16.De Pauli, C. P., O. A. H., Derosa and M. C. Giordano, “Effect of phosphate ions on zinc dissolution in alkaline solutions”, J. Electroanal. Chem., Vol. 73, 105-108 (1976)
17.Schwabe, K. and H. —B. Luck, “ The anodic behavior of zinc in saturated solution of zinc sulphate”, Electrochim. Acta, Vol.17, 99-105 (1972)
18. Zhang, X. G. “Corrosion and Electrochemistry of Zinc”, 85 (1996)
19. Powers, R. W., “Film formation and hydrogen evolution on the alkaline zinc electrode”, J. Electrochem. Soc., Vol.118, 685-695 (1971)
20.Drury, J. S., N. A., Hampson, and A.Marshall, “The anodic behavior of zinc in silicate-containing alkaline solutions”, Electroanal. Chem. Interfacial Electrochem., Vol. 50, 292-294 (1974)
21.Kaesche, H., “ The passivity of zinc in aqueous solutions of sodium
carbonate and sodium bicarbonate”, Electrochim. Acta, Vol. 9, 383-394 (1964)
22.Muralidharan, V.S., and K.S. Rajagopalan, “Kinetics and mechanism of passivation of zinc in dilute sodium hydroxide solution”, Br. Corros. J., Vol.14, 231-234 (1979)
23.D’Alkaine, C. V., and M. R., da Cunha, “Influence of the CO32- on the passivation of zinc in slightly alkaline solution”, International Congress on Metallic Corrosion, Toronto, Ontario, 122-125 (1986)
24.Davies, D. E., and M. M.,Lotlikar, “ Passivation and pitting characteristics of zinc”, Br. Corros. J., Vol.1, 149-155 (1966)
25.Pirnat, A., L. Meszaros, and B. Lengyel, “Study of the formation of chromate layer on zinc by impedance technique”, Electrochim. Acta ,Vol.35, 515-522 (1990)
26.Bijimi, D. and D. R. Gabe, “Passivation studies using group VIA anions. Part III. Anodic treatment of zinc”, Br. Corros. J., Vol.18, 138-141 (1983)
27.Macias, A., and C. Andrade, “Corrision rate of falvanized steel immersed in saturated solutions of Ca(OH)2 in the PH range 12-13”, Br. Corros. J., Vol.18, 82-87 (1983)
28.Blanco, M. T., C. Andrade and A. Macias, “SEM study of corrision products of galvanized reinforcements immersed in the PH range 12.6 to 13.6”, Br. Corros. J., Vol.19, 41-48 (1984)
29.De Pinto, I. S., C. P. De Pauli, H. Herrera, H. Mishima, and B. A. Lopez, “Effect of arsenate anion on the dissolution and passivation of zinc electrode in slightly alkaline solutions”, Electrochim. Acta, Vol.31, 527-533 (1986)
30.張裕祺,鋅在含矽酸鹽的鹼性電解質溶液中的電化學行為,淡江學報。
31.Kuzenetsov, Y. I., and L. P., Podgornova, “Corrision and electrochemical behavior of zinc in phosphate solution”, Zashch. Met., Vol.19, 98-102 (1983)
32.De Pauli, C. P., O. A. H., Derosa, and M. C., Giordano, “Zinc dissolution and passivation in buffered phosphate solutions. Part I. A comparative study with sodium hydroxide solutions”, J. Electroanal. Chem., Vol.86, 335-348 (1978)
33.Awad, S. A., and K. M., Kamel, “Mechanism of corrosion-inhibition and corrosion-promotion of zinc by phosphate ions”, J. Electroanal. Chem., Vol.24, 217-225 (1970)
34. Lobnig, R. E., D. J. Siconolfi, L. Psota-Kelty, G. Grundmeier, R. P. Franenthal, M. Stratmann, and J. D. Sinclair, “Atmospheric corrosion of zinc in the presence of ammonium sulfate particles”, J Electrochem. Soc., Vol. 143, No. 5, 1539-1546 (1996)
35. Kazuo Knodo, Tomoya Murakami and Kunio Shinohara, “Morphology evolution of zinc-iron binary alloys electrosited with copper additive”, J Electrochem. Soc., Vol. 143, No. 4, L75-L77 (1996)
36.Cai, M. and S. M.Park, “Spectroelectrochemical studies on dissolution and passivation of zinc electrodes in alkaline solutions”, J Electrochem. Soc., Vol. 143, No. 7, 2125-2131 (1996)
37.格里弟博士編著,鮮祺振博士編譯,電極動力學,,徐氏基金會出版,p.97,(1996)
38.Chang, Y.C. ”A kinetic model for the anodic dissolution of zinc in a lkaline electrolyte with sodium metasilicate additions”, Electrochim. Acta, Vol.41, 2425-2432 (1996)
39.Antropov, M., “Theoretical Electrochemistry”, Mir Publisher, Moscow, USSR, 393-394 (1972)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top