跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/02/29 16:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊子傑
研究生(外文):Chuang Tzu-Chieh
論文名稱:以溶解空氣浮除法處理半導體製造業含氟廢水之研究
論文名稱(外文):Treatment of Fluoride-Containing Wastewater of Semiconductor Manufacturer through Dissolved Air Flotation
指導教授:劉志成劉志成引用關係
指導教授(外文):J. C. Liu
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:95
中文關鍵詞:半導體溶解空氣浮除法氟化鈣含氟廢水油酸鈉蝕刻
外文關鍵詞:calcium fluoridewastewatersodium oleatesemiconductorfluorideetchingdissolved air flotation(DAF)
相關次數:
  • 被引用被引用:14
  • 點閱點閱:864
  • 評分評分:
  • 下載下載:133
  • 收藏至我的研究室書目清單書目收藏:1
本研究之主要目的在於探討以溶解空氣浮除法應用於處理半導體業含氟廢水之可行性。我們添加鈣鹽產生氟化鈣固體,再以油酸鈉作為捕集劑,經浮除方式將溶液中的氟化鈣去除。
實驗結果顯示,鈣氟比為0.5時,殘餘氟離子濃度即可降至放流水標準內,在油酸鈉濃度為75 mg/L時,氟化鈣有良好的去除效果,浮除5分鐘,去除率即可達到穩定狀態。實驗範圍內,酸鹼值對浮除的效果影響不大,操作飽和壓力與迴流率愈大則有愈好的去除率。當硫酸根與磷酸根存在時,會導致殘餘氟離子濃度升高而無法符合放流水標準,而磷酸根的存在還會造成浮除效果的惡化。離子強度亦會導致殘餘氟離子濃度增加。
當鈣氟比為1.0時,可使氟離子濃度降至更低,但必須添加更多的油酸鈉,才會有良好的去除率。高鈣氟比可抑止硫酸根與磷酸根之干擾,但同樣必須耗用更多的油酸鈉。
實驗中發現,鈣鹽的添加量與添加鈣鹽時的混凝條件會導致氟化鈣生成的粒徑大小不同,進而影響後續的浮除效果。
The major objective of this study was to investigate the application of dissolved air flotation(DAF) in treating fluoride-containing wastewater from semiconductor manufacturer. Calcium chloride was added to generate the precipitate of calcium fluoride. Sodium oleate was then used as collector to achieve the separation of calcium fluoride from water.
When molar ratio of calcium to fluoride was 0.5, the residual fluoride concentration was lower than effluent standard (15 mg/L). All flotation reactions were completed within 5 minutes. Experimental results indicated that flotation pH had insignificant effect on the removal efficiency of calcium fluoride. Flotation efficiency increased with increasing saturation pressure and recycle ratio. It was found that the presence of sulfate or phosphate resulted in elevated residual fluoride concentration, and lower flotation efficiency. In addition, ionic strength affected the system performance.
When molar ratio of calcium to fluoride was 1.0, lower residual fluoride concentration could be achieved. However, higher dose of sodium oleate was needed. The interference of sulfate and phosphate on residual fluoride concentration was suppressed under calcium to fluoride ratio of 1.0, but higher dose of sodium oleate was needed as well.
It was found that calcium chloride dose and mixing condition resulted in different size of calcium fluoride precipitate, and affected the subsequent flotation efficiency.
摘 要I
ABSTRACTII
誌 謝III
目 錄IV
圖表目錄VII
第一章 緒 論1
第二章 理論基礎與文獻回顧3
2.1 氟化物之性質及處理技術3
2.1.1氟化物之性質與污染來源3
2.1.2氟化物對人體以及環境的影響3
2.1.3氫氟酸的應用及傷害4
2.1.4含氟廢水處理技術5
2.2 半導體產業簡介6
2.2.1半導體產業概況6
2.2.2半導體製造流程7
2.2.3半導體製程廢棄物10
2.2.4半導體業廢水之處理12
2.3浮除法14
2.3.1浮除法簡介14
2.3.2氣泡與浮除的關係17
2.3.3影響浮除之因素19
2.4界面活性劑在氟化鈣表面之吸附行為21
第三章 實驗設備與方法28
3.1實驗材料28
3.2實驗藥品28
3.3實驗設備與裝置29
3.3.1溶解式空氣浮除裝置30
3.4實驗項目與步驟32
3.4.1最適鈣氟比(莫耳比=0.5)32
3.4.1-1添加陰離子的含氟廢水33
3.4.1-2含陰離子或離子強度之含氟廢水34
3.4.2改變鈣氟比(莫耳比=1.0)34
3.4.3氟化鈣粒徑探討35
3.4.4混凝槽迴流對浮除的影響35
3.5分析測定方法36
3.5.1殘餘氟離子分析(IC)36
3.5.2懸浮固體濃度(Suspended solids , SS)分析37
3.5.3粒徑分佈分析(Particle size distribution)38
第四章 結果與討論40
4.1 鈣氟莫耳比的影響40
4.1.1鈣氟比對殘餘氟離子與氟化鈣去除率之影響40
4.1.2浮除時間對氟化鈣去除率之影響40
4.2 鈣氟莫耳比為0.543
4.2.1油酸鈉濃度對氟化鈣去除率之影響43
4.2.2飽和壓力對氟化鈣去除率之影響43
4.2.3迴流率對氟化鈣去除率之影響44
4.2.4浮除pH值對氟化鈣去除率之影響45
4.2.5硫酸根濃度對殘餘氟離子與氟化鈣去除率之影響46
4.2.6磷酸根濃度對殘餘氟離子與氟化鈣去除率之影響46
4.2.7離子強度對殘餘氟離子與氟化鈣去除率之影響47
4.2.8添加鈣鹽時的攪拌時間對氟化鈣去除之影響48
4.2.9添加鈣鹽時的攪拌pH值對氟化鈣去除之影響49
4.3 鈣氟莫耳比為1.059
4.3.1油酸鈉濃度對氟化鈣去除率之影響59
4.3.2飽和壓力對氟化鈣去除率之影響59
4.3.3迴流率對氟化鈣去除率之影響59
4.3.4硫酸根濃度對殘餘氟離子與氟化鈣去除率之影響60
4.3.5磷酸根濃度對殘餘氟離子與氟化鈣去除率之影響61
4.3.6陰離子效應存在時之改善61
4.3.7離子強度對殘餘氟離子與氟化鈣去除率之影響62
4.3.8添加鈣鹽時的攪拌時間對氟化鈣去除之影響63
4.3.9添加鈣鹽時的攪拌pH值對氟化鈣去除之影響63
4.4 氟化鈣粒徑的探討73
4.4.1混凝條件對氟化鈣粒徑之影響73
4.4.2植種73
第五章 結論與建議82
參考文獻83
符號說明94
作者簡介95
王興毅,鍾俐娟,陳幸雄,陳梧桐,「2000年半導體工業年鑑」,工業技術研究院電子工業研究所(2000)。
行政院環境保護署,「台灣地區氟的污染分佈及其對人體牙齒及健康影響之研究」,第4-66頁,台北(1995)。
何玉蘭,「含鋅與含鉛之廢水的泡沫分離處理」,碩士論文,國立清華大學化學研究所應用化學組,新竹(1990)。
阮國棟,「氟化物之污染特性及處理技術」,工業污染防治,第29期,第67-77頁(1989)。
李茂松,廖啟鐘,張王冠,「積體電路產業氫氟酸廢水結晶處理整合回收技術」,1998工程實務研討會論文集(1998)。
伯榮生,「幾丁聚醣醋酸水溶液之光散射研究」,碩士論文,私立元智大學,中壢(1998)。
邱作基,「積體電路工業清潔生產技術指標探討」,清潔生產資訊,第14期,第25-43頁(1997)。
林明獻,「矽晶圓半導體材料技術」,全華科技圖書,台北(2000)。
周珊珊,曹連桂,黃森元,李茂松,彭淑惠,「含氟廢水之流體化床結晶處理技術」,第十九屆廢水處理技術研討會論文集,台中,第310-319頁(1994)。
高大華,「印刷電路板製造業含氟廢水與含銅污泥之處理」,臺灣工業技術學院化學工程系碩士論文(1996)。
高偉峰、鄧昭芳、李建賢,「半導體工業最重要的毒性物質:氫氟酸中毒」,J Emerg Crit Care Med., Vol.10, No.1, pp.1-10 (1999).
許明華、馬念和、阮國棟,「氟化物水污染處理技術及管理策略」,工業污染防治,第60期,第16-27頁(1997)。
莊永豐,「Wastewater Treatment Recycle and Reuse in UMC」,專題演講,國立台灣科技大學化工系,台北(2001.3.20)。
莊達人,「VLSI製造技術」,高立圖書,台北(1998)。
曹志明,「氟化鈣結晶動力學之研究」,國立台灣大學化學工程學研究所碩士論文(1994)。
張俊彥,「積體電路製程及設備技術手冊」,中華民國經濟部技術處,台北(1996)。
經濟部工業局九十年度工業技術人才培訓計畫講義,經濟部工業局(2000)。
蔡長益,「以鐵被覆廢觸媒去除水中氟離子之研究」,臺灣工業技術學院化學工程系碩士論文(1997)。
Amjad, Z. “Inhibition of Calcium Fluoride Crystal Growth by Polyelectrolytes”, Langmuir, Vol.7, No.10, pp.2405-2408 (1991).
Amjad, Z. “Constant Composition Study of Crystal Growth of Calcium Fluoride. Influence of Poly(Carboxylic Acids), Polyphoshates, Phosphonates, and Phytate”, Langmuir, Vol.7, No.3, pp.600-603 (1991).
Barker, R. W., E. L. Cussler, W. Eykamp, W. J. Koros, R. L. Riley and H. Strathmann, Membrane Separation Systems, Noyes, New Jersey (1991).
Bunker, D. Q., Jr, J. K. Edzwald, J. Dahlquist and L. Gillberg, “Pretreatment Considerations for Dissolved Air Flotation: Water Type, Coagulants and Flocculation”, Water Science and Technology, Vol.31, No.3-1, pp.63-71 (1995).
Caceres, L. and R. Contreras, “Municipal Wastewater Treatment by Lime/Ferrous Sulfate and Dissolved Air Flotation”, Water Science and Technology, Vol.31, No.3-4, pp.285-294 (1995).
Chang, C.Y. and S. M. Sze, ULSI Technology, McGraw-Hill, New York (1996).
Chung, T. H. and D. T. Kim, “Significance of Pressure and Recirculation in Sludge Thickening by Dissolved Air Flotation”, Water Science Technology, Vol.36, No.12, pp.223-230 (1997).
De Rijk, S. E., J. H. J. M. van der Graaf and J. G. Den Blanken, “Bubble Size in Flotation Thickening”, Water Research, Vol.28, No.2, pp.465-473 (1994).
Edzwald, J. K., J. P. Walsh, G. S. Kaminski and H. J. Dunn, “Flocculation and Air Requirements for Dissolved Air Flotation”, Journal of the American Water Works Association, Vol.84, No.3, pp.92-100 (1992).
Edzwald, J. K., “Principle and Applications of Dissolved Air Flotation”, Water Science and Technology, Vol.31, No.3-4, pp.1-23 (1995).
Fukushi, K., N. Tambo and Y. Matsui, “A Kinetic Model for Dissolved Air Flotation in Water and Wastewater Treatment”, Water Science and Technology, Vol.31, No.3-4, pp.37-47 (1995).
Gilles, D. G. and R. C. Loehr, “Waste Generation and Minimization in Semiconductor Industry”, Journal of Environmental Engineering, ASCE, Vol.120, No.1, pp.72-86 (1994).
Grases, F., A. Garcia-Raso, J. Palou, A. Costa-Bauza and J.G. March, “A Study of the Relationship between the Chemical Structure of Some Carboxylic Acids and Their Capacity to Inhibit the Crystal Growth of Calcium Fluoride”, Colloids and Surfaces, Vol.54, No.3-4, pp.313-319 (1991).
Gulas, V., R. Lindsey, L. Benefield and C. Randall, “Factors Affecting the Design of Dissolved Air Flotation Systems”, JWPCF, Vol.50, No.7, pp.1835-1840 (1978).
Hall, T., J. Pressdee, R. Gregory and K. Murray, “Cryptosporidium Removal during Water Treatment Using Dissolved Air Flotation”, Water Science and Technology, Vol.29, No.9, pp.125-135 (1995).
Han, M. and S. Dockko, “Zeta Potential Measurement of Bubbles in DAF Process and Its Effect on the Removal Efficiency”, Water Supply, Vol.17, No.3-4, pp.177-182 (1999).
Heinanen, J., P. Jokela and T. Ala-Peijari, “Use of Dissolved Air Flotation in Potable Water Treatment in Finland”, Water Science and Technology, Vol.31, No.3-4, pp.225-238 (1995).
Hicyilmaz, C., S. Bilgen and K. E. Ozbas, “The Effect of Dissolved Species on Hydrophobic Aggregation of Fluorite”, Colloids and Surface A: Physicochemical and Engineering Aspects, Vol.121, No.1, pp.15-21 (1997).
Hu, J. S., M. Misra and J. D. Miller, “Effect of Temperature and Oxygen on Oleate Adsorption by Fluorite”, International Journal of Mineral Processing, Vol.18, No.1-2, pp.57-72 (1986).
Huang, S. D., H. Ho, Y. M. Li and C. S. Lin, “Adsorbing Colloid Flotation of Heavy Metal Ions from Aqueous Solution at Large Ionic Strength”, Environmental Science and Technology, Vol.29, No.7, pp.1802-1807 (1995.)
Huang, C. J. and Liu, J. C., “ Precipitate Flotation of Fluoride-Containing Wastewater from a Semiconductor Manufacturer”, Water Research, Vol.33, No.16, pp.3403-3412 (1999).
Huang, S. D., J. J. Tzuoo, J. J. Gau, H. S. Hsieh and C. F. Fann, “Effect of Al(Ⅲ) as an Activator for Adsorbing Colloid Flotation”, Separation Science and Technology, Vol. 19, No. 13-15, pp.1061-1072 (1984-1985).
Janssens, J. G., “Developments in Coagulation, Flocculation and Dissolved Air Flotation”, Water Engineering and Management, Vol.139, No.1, pp.26-31 (1992).
Johnson, B. A., B. Gong, W. Bellamy and T. Tran, “Pilot Plant Testing of Dissolved Air Flotation for Treating Boston’s Low-Turbidity Surface Water Supply”, Water Science and Technology, Vol.31 No.3-4, pp.83-92 (1995).
Kellar, J. J., C. A. Young and J. D. Miller, “In-Situ FT-IR/IRS Investigation of Double-Bond Reaction of Adsorbed Oleate at Fluorite Surface”, International Journal of Mineral Processing, Vol.35, No.3-4, pp.239-251 (1992).
Kern, W., Handbook of Semiconductor Wafer Cleaning Technology, Noyes Publications, Westwood, NJ (1993).
Leppinen, D. M., “A Kinetic Model of Dissolved Air Flotation Including the Effects of Interparticle Forces”, Journal of Water Supply Research and Technology-Aqua, Vol.49, No.5, pp.259-268 (2000).
Lin, C. S. and S. D. Huang, “Removal of Cu(Ⅱ) from Aqueous Solution with High Ionic Strength by Adsorbing Colloid Flotation”, Environmental Science and Technology, Vol.28, No.3, pp.474-478 (1994).
Malley, J. P., Jr and J. K. Edzwald, “Laboratory Comparison of DAF with Conventional Treatment”, Journal of the American Water Works Association, Vol.83, No.9, pp.56-61 (1991).
Matis, K. A. and P. Mavros, “Recovery of Metals by Ion Flotation from Dilute Aqueous Solutions”, Separation and Purification Methods, Vol.20, No.1, pp.1-48 (1991).
Matsui, Y., K. Fukushi and N. Tambo, “Modeling, Simulation and Operational Parameters of Dissolved Air Flotation”, Journal of Water Supply Research and Technology-Aqua, Vol.47, No.1, pp.9-20 (1998).
Michael, L. F. and J. D. Miller, “The Significance of Collector Colloid Adsorption Phenomena in the Fluorite/Oleate Flotation System as Revealed by FTIR/IRS and Solution Chemistry Analysis”, International Journal of Mineral Processing, Vol.48, No.3-4, pp.197-216 (1996).
Michael, L.F. and J. D. Miller, “Kinetics of 18-Carbon Carboxylate Adsorption at the Fluorite Surface”, Langmuir, Vol.13, No.16, pp.4377-4382 (1997).
Mielczarski, E., J. A. Mielczarski, and J. M. Cases, “Molecular Recognition Effect in Monolayer Formation of Oleate on Fluorite”, Langmuir, Vol.14, No.7, pp.1739-1747 (1998).
Mielczarski, E., J. A. Mielczarski, and J. M. Cases, “Dynamics of Fluorite-Oleate Interactiond”, Langmuir, Vol.15, No.2, pp.500-508 (1999).
Miller, J. D. and M. Misra, “The Hydrophobic Character of Semi-Soluble Salts Minerals with Oleate as Collector”, International Conference on Recent Advances in Mineral Science and Technology, Johannesburg, South Africa (1984).
Morozov, V. V., H. Baldauf and H. Schubert, “On the Role of the Composition of the Aqueous Phase in the Flotation of Fluorite and Calcite”, International Journal of Mineral Processing, Vol.35, No.3-4, pp.177-189 (1992).
Moudgil, B. M. and R. Chanchani, “Flotation of Apatite and Dolomite Using Sodium Oleate as the Collector”, Minerals and Metallurgical Processing, Vol.2, No.1, pp.13-19 (1985).
Mukherjee, D., A. Kulkarni an W. N.d Gill, “Membrane Based System for Ultrapure Hydrofluoric Acid Etching Solutions”, Journal of Membrane Science, Vol.109, pp.205-217 (1996).
Nancollas, G. H., R. A. Bochner, E. Liolios, L. J. Shyu, Y. Yoshikawa, J. P. Barone and D. Svrjcek, “The Kinetics of Crystal Growth of Divalent Metal Fluodides”, AIChE Symposium Series, Vol.78, No.215, pp.26-36 (1982).
Nguyen, A. V., J. Ralston and H. J. Schulze, “On Modelling of Bubble-Particle Attachment Probability in Flotation”, International Journal of Mineral Processing, Vol.53, No.4, pp.225-249 (1998).
Pascoe, R. D. and E. Doherty, “Shear Flocculation and Flotation of Hematite Using Sodium Oleate”, International Journal of Mineral Processing, Vol.51, No.1-4, pp.269-282 (1997).
Perea-Carpio, R., F. Gonz’alez-Caballero and J. M. Bruque, “On the Onteractions at Interfaces in Fluorite Flotation”, International Journal of Mineral Processing, Vol. 23, No.3-4, pp.229-240 (1988).
Plummer, J. D., J. K. Edzwald and M. B. Kelley, “Removing Cryptosporidium by Dissolved Air Flotation”, Journal of the American Water Works Association, Vol.84, No.3, pp.85-95 (1995).
Rao, K. H. and K. S. E. Forssberg, “Mechanism of Fatty Acid Adsorption in Salt-Type Mineral Flotation”, Materials Engineering, Vol.4, No.7-11, pp.879-890 (1991).
Rao, K. H., J M. Cases, P. D. Donato and K.S.E. Forssberg, “Mechanism of Oleate Interaction on Salt-Type Minerals IV. Adsorption, Electrokinetic, and Diffuse Reflectance FT-IR Studies of Natural Fluorite in the Presence of Sodium Oleate”, Journal of Colloid and Interface Science, Vol.145, No.2, pp.314-329 (1991).
Rao, K. H., J M. Cases and K.S.E. Forssberg, “Mechanism of Oleate Interaction on Salt-Type Minerals V. Adsorption and Precipitation Reaction in Relation to the Solid/Liquid Ratio in the Synthetic Fluorite-Sodium Oleate System”, Journal of Colloid and Interface, Vol.145, No.2, pp.330-348 (1991).
Rodrigues, A. J. and P. R. G. Brandao, “The Influence of Crystal Chemistry Properties on the Floatability of Apatites with Sodium Oleate”, Minerals Engineering, Vol.6, No.6, pp.643-653 (1993).
Rulyov, N. N., “Application of Ultra-Flocculation and Turbulent Micro-Flotation to the Removal of Fine Contaminants from Water”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.151, No.1-2, pp.283-293 (1999).
Saha, S., “Treatment of Aqueous Effluent for Fluoride Removal”, Water Research, Vol.27, No.8, pp.1347-1350 (1993).
Schubert, H., “On the Turbulence-Controlled Microprocesses in Flotation Machines”, International Journal of Mineral Processing, Vol.56, pp.257-276 (1999).
Shyu, L. J. and G. H. Nancollas, “The Kinetics of Crystallization of Calcium Fluoride. A New Constant Composition Method”, Croatica Chemica Acta, Vol.53, No.2, pp.281-289 (1980).
Sohnel, O. and J. W. Mullin, “Precipitation of Calcium Carbonate”, Journal of Crystal Growth, Vol.60, No.2, pp.239-251 (1982).
Somasundaran, P. and S. Krishnakumar, “Adsorption of Surfactants and Polymers at the Solid-Liquid Interface”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.123-124, pp.491-513 (1997).
Subrahmanyam, T. V. and K. S. E. Forssberg, “Fine Particles Processing: Shear-Flocculation and Carrier Flotation”, International Journal of Mineral Processing, Vol.30, No.3-4, pp.265-286 (1990).
Tai, C. Y. and F. B. Chen, “Polymorphism of CaCO3 Precipitated in a Constant-Composition Environment”, AIChE Journal, Vol.44, No.8, pp.1790-1798 (1998).
Trahar, W. J. and L. J. Warren, “The Flotability of Very Fine Particles-A Review”, International Journal of Mineral Processing, Vol.3, No.2, pp.103-131 (1976).
van Os, N. M., J. R. Haak, L. A. M. Rupert, Physico-Chemical Properties of Selected Anionic, Cationic and Nonionic Surfactants., Elsevier Science Publishers B. V., Amsterdam (1993).
Wu, L. and W. Forsling, “Surface Complexation of Calcium Minerals in Aqueous Solution Ⅲ. Ion Exchange and Acid-Base Properties of Hydrous Fluorite Surfaces”, Journal of Colloid and Interface Science, Vol.174, No.1, pp.178-184 (1995).
Yoon, R. —H., “The Role of Hydrodynamic and Surface Forces in Bubble-Particle Interaction”, International Journal of Mineral Processing, Vol.58, No.1, pp.129-143 (2000).
Zant, P. V., Microchip Fabrication, McGraw-Hill, New York (1996).
Zouboulis, A. I. and K. A. Matis, “Removal of Cadmium from Dilute Solution by Flotation”, Water Science and Technology, Vol.31, No.3-4, pp.315-326 (1995).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top