跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/12 04:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃敏賢
研究生(外文):Min-Hsien Hwang
論文名稱:利用改良的兩階段動態規劃之方法已獲得稠密的視差估測
論文名稱(外文):An Improved Algorithm for Dense Disparity Estimation Using Two--Level Dynamic Programming Approach
指導教授:鍾國亮鍾國亮引用關係
指導教授(外文):Kuo--Liang Chung
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:30
中文關鍵詞:深度影像視差估測動態規劃立體影像匹配
外文關鍵詞:Depth mapDisparity estimationDynamic programmingStereo matching
相關次數:
  • 被引用被引用:1
  • 點閱點閱:535
  • 評分評分:
  • 下載下載:58
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,假設兩部相機採取平行的方式排列,並且標記可接受之最大視差為 d。若給與兩張立體視覺影像,L and R, Tasi and Katsaggelos 最近發表一個新而且快速的演算法去解決稠密的視差估測的問題。為了解決相同的問題,本篇論文發表一個改良的兩階段動態規劃之方法,期望得到較快速且精準的結果。 在第一階段,從 L and R
兩張影像中的每一列去獲得主要的特徵點,然後針對每一組對應列,運用動態規劃的技術及三個消除的規則, 去準確地獲得那些特徵點的匹配關係。在第二階段,根據第一階段的結果進一步將每一列切割為數個子區域。 然後,有範圍地動態規劃的技術被利用以加速決定兩對應列之間子區域中每一個的點匹配關係。 上述之兩階段的方法是從中間列往上下兩邊界列執行,直到所有列都已完成為止。本論文有一個實驗被實做,以
介紹本方法之快速及準確。本論文所提出之方法相對於 Tasi and katsaggelos 所發表的方法是具有相當之競爭性的。最後,將本論文所提出之方法與 Tasi and Katsaggelos 之方法在速度上相比較可以得到 53% 的改善。

Suppose two cameras are arranged in a parallel-axis configuration and the maximal disparity allowable is assumed to d. Given two stereo images, say L and R, recently Tasi and Katsaggelos presented a new and efficient algorithm for solving the dense disparity estimation problem. For solving the same problem, this paper presents an improved two--level dynamic programming approach in fast and robust manners. In level 1, the main feature points are extracted from the rows of L and R, then we apply the dynamic programming technique associated with three elimination rules to find the matched feature pairs for any two corresponding rows in a robust manner. In level 2, for that two rows, based on the matched feature pairs obtained in the first level, each row is further divided into some small
subintervals. Then a banded dynamic programming technique with respect to d is employed to speed up the determination of the matched point pairs between the corresponding two subintervals. The above two-level process is performed from the middle rows to the boundary rows until all the rows in L and R are processed. An experiment is carried out to demonstrate the computational and robust advantages of the proposed algorithm. The proposed improved algorithm is quite competitive with
the current result by Tasi and Katsaggelos. Experimental results reveal that the execution time improvement ratio is about 53%.

目錄
中文摘要 ...............................................I
英文摘要 .............................................III
誌 謝 ...............................................V
圖表索引 .............................................VII
1. INTRODUCTION ........................................1
2. THE FIRST--LEVEL DYNAMIC PROGRAMMING ................4
3. THE SECOND--LEVEL DYNAMIC PROGRAMMING ..............13
4. EXPERIMENTAL RESULTS ...............................17
5. CONCLUSIONS ........................................19
6. REFERENCES ........................................20
7. 作者簡介 ..........................................23
8. 授權書 ............................................24

M. Accame, F. G. B. De Natale, and D. D. Giusto, Hierarchical block matching for disparity estimation in stereo sequences, in International Conference on Image Processing, Oct. 1995, Vol. II, pp. 374-377.
M. Bierling, Displacement estimation by hierarchical block-matching, in Proc. SPIE Conf. Visual Communication and Image Processing, Nov. 1988, Vol. 1001, pp. 942-951.
H. Z. Dan and B. Dubuisson, String matching for stereo vision, Pattern Recognition Letters, Vol. 9, pp. 117-126, 1989.
M. J. Hannah, Computer matching of areas in stereo images, Ph.D. dissertation, Rep. STAN-CS-74-483, Stanford Univ., Stanford, CA, 1974.
E. Izquierdo, Stereo matching for enhanced telepresence in
3D-videocommunications, IEEE Transactions on Circuits System
Video Technology, Vol. 7, pp. 629-643, Aug. 1997.
D. Marr and E. Hildreth, Theory of edge detection, Proc. of the Royal Society, B 207, pp.187-217, 1980.
T. Kanade and M. Okutomi, A stereo matching algorithm with an adaptive windows: theory and experiment, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 16, No. 9, pp. 920-932, Sep. 1994.
M. Levine, D. O'Handley, and G. Yagi, Computer determination of depth maps, Computer Graphics and Image Processing, Vol. 2, pp. 131-150, 1973.
S. H. Lee and J. J. Leou, A dynamic programming approach to line segment matching in stereo vision, Pattern Recognition, Vol. 27, No. 8, pp. 961-986, 1994.
S. A. Lloyd, Stereo matching using intra- and inter- row dynamic
programming, Pattern Recognition Letter, Vol. 4, pp. 273-277, 1986.
D. Marr and T. Poggio, Cooperative computation of stereo disparity, Science, Vol. 194, pp. 283-287, Oct. 1976.
K. Mori, M. Kidode, and H. Asada, An iterative prediction and correction method for automatic stereo comparison, Computer Graphics and Image Processing, Vol. 2, pp. 393-401, 1973.
Y. Ohta and T. Kanade, Stereo by intra- and inter- scanline search using dynamic programming, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 7, No. 2, pp. 139-154, Mar. 1985.
C. J. Tsai and A. K. Katsaggelos, Dense disparity estimation with a divide-and-conquer disparity space image technique, IEEE Transactions on Multimedia, Vol. 1, No. 1, pp. 18-29, Mar. 1999.
C. J. Tsai and A. K. Katsaggelos, Sequential Construction of 3D-Based Scene Description, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 10, No. 4, pp. 576-584, Jun. 2000.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊