跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/09 06:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許程為
研究生(外文):Chen-Wei Hsu
論文名稱:立方晶系氮化鎵化合物之反射調制光譜
論文名稱(外文):Modulation Spectroscopy of Cubic-GaN Semiconductor
指導教授:黃鶯聲
指導教授(外文):Ying-Sheng Huang
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:52
中文關鍵詞:無接點電場調制壓電調制光子調制反射光譜分子束磊晶法有機金屬化學氣相沈積法
外文關鍵詞:CERPzRPRMBEMOCVD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:374
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
我們利用無接點電場調制 (CER) 、壓電調制 (PzR) 及光子調制反射光譜 (PR) 量測以分子束磊晶法 (MBE) 及有機金屬化學氣相沈積法 (MOCVD) 成長於 (001) 之砷化鎵基板上的立方晶系氮化鎵薄膜之近能帶的躍遷信號。我們利用不同調制技術觀察激子躍遷的信號,E0,及由價電帶上所形成之旋轉軌道分裂,E0+Δ0,之值。並利用Varshni及Bose-Einstein聲子耦合之關係式分別求得E0及E0+Δ0隨溫度變化之係數,並探討此係數和其它烏采結構作一比較。
由有機金屬化學氣相沈積法所成長之立方晶系氮化鎵,除了觀察E0及E0+Δ0之躍遷能量外,我們更進一步利用包含電子及縱向光聲子耦合參數之Bose-Einstein方程式探討展寬參數對溫度的關係,和其它研究團對所做之烏采結構氮化鎵做一比較。而閃鋅結構之GaN能隙及溫度變化係數皆小於烏采結構之氮化鎵。

We have performed contactless electroreflectance (CER) and piezoreflectance (PzR) and photoreflectance (PR) measurements in studying the near band edge interband transitions of a cubic GaN film grown on GaAs (001) substrate by molecular beam epitaxy and metalorganic chemical vapor deposition. For the samples, both the excitonic transition and the transition from the spin-orbit splitting in the valence band ( ) are observed. The parameters that describe the temperature dependence of the energies have been analyzed by both the Varshni equation and an expression containing the Bose-Einstein occupation factor for phonons.
For the samples grown by metalorganic chemical vapor deposition, the temperature dependence of the broadening parameter has also been studied in terms of Bose-Einstein equation that contains the electron (exciton)- longitudinal optical (LO) phonon coupling constant. The obtained parameters are compared with those of wurtzite GaN. The energy gap and the parameters which describe the temperature dependence of E0(T) for cubic GaN are found to be lower than that of hexagonal GaN

中文摘要----------------------------------------------------------------------------Ⅰ
英文摘要----------------------------------------------------------------------------Ⅱ
目 錄----------------------------------------------------------------------------Ⅲ
圖表索引----------------------------------------------------------------------------Ⅴ
第一章緒論----------------------------------------------------------------------1
第二章氮化鎵半導體材料4
2.1Ⅲ-Ⅴ族氮化鎵化合物相關特性4
2.2立方晶系氮化鎵簡介6
2.3立方晶系氮化鎵生長與製備8
2.3.1以MBE成長之立方晶系氮化鎵8
2.3.2以MOCVD成長之立方晶系氮化鎵8
第三章調製光譜理論及量測技術9
3.1前言9
3.2物理量與介電函數的關係10
3.2.1反射率與介電函數之關係10
3.2.2未束縛態電場調制反射光譜12
3.3調制光譜系統概論15
3.4調制光譜技術概論18
3.4.1光子調制反射光譜(PR)18
3.4.2壓電調制反射光譜(PzR)19
3.4.3無接點式電場調制反射光譜(CER)19
第四章結果與討論-------------------------------------------------------------22
4.1前言22
4.2以MBE成長之c-GaN的調制光譜23
4.3以MOCVD成長之c-GaN的調制光譜38
第五章結論----------------------------------------------------------------------48
參考資料----------------------------------------------------------------------------49

1.Powell, R. C., N. E. Lee, Y. W. Kim, and J. E. Greene, “Heteroepitaxial wurtzite and zinc-blende structure GaN grown by reactive-ionmolecular-beam epitaxy: growth kinetics, microstructure, and properties” J. Appl. Phys. 73, 189 (1993).
2.Powell, R. C., and G. A. Tomasch, Y. W. Kim, J. A. Thornton, and J. E. Greene, in Diamond, Silicon Carbides and Related Wide Bandgap Semiconductors, edited by J. T. Glass, R. F. Messier, and N. Fujimori, MRS Symposia Proceedings No. 162 (Materials Research Society, Pittsburgh, 1990), p. 531.
3.Mizuta, M., S. Fujieda, Y. Matsumoto, and T. Kawamura, “Low temperature growth of GaN and AlN on GaAs utilizing metalorganics andhydrazine” Jpn. J. Appl. Phys. 25, L945 (1986).
4.Strite, S., J. Raun, Z. Li, A. Salvador, H. Chen, D. J. Smith, W. J. Choyke, and H. Morkog, “An investigation of the properties of cubic GaN grown on GaAs by plasma-assisted molecular-beam epitaxy” J. Vac. Sci. Technol. B 9, 1924 (1991).
5.Paisley, M. J., Z. Sitar, C. H. Carter, and R. F. Davis, “Growth of gallium nitride on silicon carbide by molecular beam epitaxy” Proc. SPIE 877, 8 (1988).
6.Paisley, M. J., Z. Sitar, J. B. Posthill, and R. F. Davis, “Growth of cubic phase gallium nitride by modified molecular-beam epitaxy” J. Vac. Sci. Technol. A 7, 701 (1989).
7.Lei, T., M. Fanciulli, R. J. Molnar, T. D. Moustakes, R. J. Graham, and J. Scanlon, “Epitaxial growth of zinc blende and wurtzitic gallium nitride thin films on (001) silicon” Appl, Phys. Lett. 59, 944 (1991).
8.Lin, M. E., G. Xue, G. L. Zhou, J. E. Greene and H. Morkoc, “p-type zinc-blende GaN on GaAs substrates” Appl. Phys. Lett. 63 (1993) 932.
9.Olson, C. G., D. W. Lynch, and A. Zehe, “10-30-eV optical properties of GaN” Phys. Rev. B 24, 4629 (1981).
10.Okumura, H., S. Yoshida, and T. Okahisa, “Optical properties near the band gap on hexagonal and cubic GaN” Appl. Phys. Lett. 64, 2997 (1994).
11.Silberstein R. P. and Fred H. Pollak, “Observation of exciton quenching in GaAs at room temperature using electrolyte electroreflectance”, Solid State Commu. Vol.33, pp.1131-1133 (1980).
12.Berry, Alok K., D. K. Gaskill and G. T. Stauf, “Photoreflectance of semi-insulating InP: Resistivity effects on the exciton phase”, Appl. Phys. Lett. Vol.58, pp.2824-2826 (1991).
13.Bicelli, L. Peraldo. “Excitonic interference phenomena in electrolyte electroreflectance”, J. Appl. Phys. Vol.62, pp.4523-4527 (1987).
14.Acosta-Ortiz S. E. and Lastras-Martinez, “Measurements of Above-Bandgap Optical Anisotropies in the (001) Surface of GaAs”, Solid State Commu. Vol.64, pp.809-811 (1987).
15.Acosta-Ortiz S. E. and Lastras-Martinez, “Electro-optic effects in the optical anisotropies of (001) GaAs”, Phys. Rev. B Vol.40, pp.1426-1429 (1989).
16.Glembocki, O. J., N. Bottka and J. E. Fuxrneaux, “Effects if impurity transition on electroreflectance in thin epitaxial GaAs and Ga1-xAlxAs/GaAs layers”, J. Appl. Phys. Vol.57, pp.432-437 (1985).
17.Tober R. L. and J. D. Bruno, “Modulation Effects Near the GaAs Absorption Edge”, J. Appl. Phys. Vol.68, pp.6388-6392 (1990).
18.Qiang, H., F. H. Pollak and G. Hickman, “Piezo-Photoreflectance of Direct Gap of GaAs and Ga0.78Al0.22As”, Solid State Commu. Vol.76, pp.1087-1091 (1990).
19.Yin, X., X. Guo, F. H. Pollak, G. D. Petitt, J. M. Woodall, T. P. Chen and C. W. Tu, “Nature of band bending at semiconductor surfaces by contactless electroreflectance”, Appl. Phys. Lett. Vol.60, pp.1336-1338 (1992).
20.Shen, H., M. Dutta, L. Fotiadis, P. G. Newman, R. P. Moerkirk, W. H. Chang and R. N. Sacks, “Photoreflectance study of surface Fermi level in GaAs and GaAlAs”, Appl. Phys. Lett. Vol.57, pp.2118-2120 (1990).
21.Kanata, T., M. Matsunaga, H. Takakawa, Y. Hamakawa and T. Nishino, “Deep-level characterization of n-type GaAs by photoreflectance spectroscopy”, J. Appl. Phys. Vol.69, pp.3691-3695 (1991).
22.Pollak, F. H. “Modulation Spectroscopy as a Technique for Semiconductor Characterization”, Proc. SPIE Vol.276, pp.142-156 (1981).
23.Huang, D., G. Ji, U. K. Reddy, H. Morkoc, F. Xiong and T. A. Tombrello, “Photoreflectance, absorption, and nuclear resonance reaction studies of AlxGa1-xAs grown by molecular-beam epitaxy”, J. Appl. Phys. Vol.63, pp.5447-5453 (1988).
24.Li, C. F., Y. S. Huang, L. Malikova and F. H. Pollak, “Temperature dependence of the energies and broadening parameters of the interband excitonic transitions in wurtzite GaN”, Phys. Rev. B Vol.55, pp.9251-4 (1997).
25.Sitar, Z., M. J. Paisley, J. Ruan, J. W. Choyke, R. F. Davis, “Luminescence and Lattice Parameter of Cubic Gallium Nitride”, J. Mat. Sci. Lett, Vol.11, pp.261-262 (1992).
26.Miyoshi, S., K. Onabe, N. Ohkouchi, H. Yaguchi, R. Ito, S. Fukatsu and Y. Shiraki: “MOVPE growth of cubic GaN on GaAs using dimethylhydrazine” J. Crysy. Growth 124 (1992) 439.
27.Nagahara, M., S. Miyoshi, H. Yaguchi, K. Onabe, Y. Shiraki and R. Ito: “Selective growth of cubic GaN in small areas on patterned GaAs(100) substrates by metalorganic vapor phase epitaxy.” Jpn. J. Appl. Phys. 33 (1994) 694.
28.Tsuchiya, H., T. Okahisa, F. Hasegawa, H. Okumura and S. Yoshida: “Homoepitaxial growth of cubic GaN by hydride vapor phase epitaxy on cubic GaN/GaAs substrates prepared with gas source molecular beam epitaxy” Jpn. J. Appl. Phys. 33 (1994) 1747.
29.Okumura, H., S. Misawa, T. Okahisa and S. Yoshida: “Epitaxial growth of cubic and hexagonal GaN by gas source molecular beam epitaxy using a microwave plasma nitrogen source” J. Cryst. Growth 136 (1994) 361.
30.Kikuchi, A., H. Hoshi and K. Kishino: “Substrate nitridation effects on GaN grown on GaAs substrates by molecular beam epitaxy using RF-radical nitrogen source” Jpn. J. Appl. Phys. 33 (1994) 688.
31.Seraphin, B. O. “The effect of an Electric Field on Reflectivity of Germanium”, Proc. 7th Int. Conf. Phys. Semicond., ed. by M. Hulin, Academic, Dunod, Paris (1964).
32.Lorrain P. and D. R. “Corson, Electromagnetic Fields and Waves, JWANG YUAN publishing Co.”, Taipei, Taiwan, pp.508-511 (1972).
33.Ramirez-Flores, G., H. Navarro-Contreras, A. Lastras-Martinez, R. C. Powell and J. E. Greene, “Temperature-dependence optical band gap of the metastable zinc-blende structure -GaN”, Phys. Rev. B Vol.50, pp.8433-8438 (1994).
34.Petalas, J., S. Logothetidis, and S. Boultadakis, M.Alouani, and J. M. Wills, “Optical and Electronic-structure Study of Cubic and Hexagonal GaN thin films”, Phys. Rev. B, Vol.52, pp.8082-8091 (1995).
35.Shan, W., T. J. Schmidt, X. H. Yang, S. J. Hwang, J. J. Sonng and B. Goldenberg, “Temperature dependence of interband transition in GaN grown by metalorganic chemical vapor deposition”, Appl. Phys. Lett. Vol.66, pp.985-987 (1995).
36.Manasreh, M. O. “Optical absorption near the band edge in GaN grown by metalorganic chemical deposition”, Phys. Rev. B Vol.53, pp.16425-16428 (1996).
37.Aspnes, D. E., Studna, A. A. “Schottky-barrier electroreflectance: application to GaAs”, Phys. Rev. B7 pp.4605-25 (1973).
38.Varshni, Y. P. “Temperature Dependence of the Energy Gap in Semiconductors”, Physica Vol.34, pp.149-154 (1967).
39.Lantenschlager, P., M. Garriga, S. Logothetidis and M. Cardona, “Interband Critical Points of GaAs and their Temperature Dependence”, Phys. Rev. B Vol.35, pp.9174-9189 (1987).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top