跳到主要內容

臺灣博碩士論文加值系統

(100.26.196.222) 您好!臺灣時間:2024/02/23 07:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林煌翔
研究生(外文):Huang-Hsiang Lin
論文名稱:半導體雷射及光放大器在光傳輸系統中之應用分析
論文名稱(外文):Analyses of Semiconductor Laser and Semiconductor Optical Amplifier in Optical Transmission System
指導教授:劉政光劉政光引用關係
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:95
中文關鍵詞:半導體雷射半導體光放大器光傳輸系統等效電路模型光纖光二極體材料增益多模態
外文關鍵詞:semiconductor lasersemiconductor optical amplifieroptical transmission systemequivalent circuit modelfiberphotodiodematerial gainmultimode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:299
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討如何利用SPICE來模擬半導體雷射及光放大器,以進行光傳輸系統的分析。首先,在半導體雷射方面,我們由速率方程式建立其等效電路模型。我們探討量子井雷射的材料增益係數的數值計算,再利用曲線調適方法,由數值計算的結果獲得簡易的表示式,以提供半導體雷射之等效電路模型使用。在SPICE中,利用其直流分析與交流分析可觀察到臨界電流和頻率響應曲線,獲得其頻寬限制。而利用暫態分析與富利葉分析則可容易地獲得延遲時間、弛張振盪和諧波失真的現象。我們也建立半導體光放大器模型,並驗証其正確性。同時,我們也建立光纖之等效電路模型,探討光纖之衰減及色散,利用時間延遲電路來模擬光纖的色散現象。然後在接收端使用P-I-N光二極體作為光檢測器,建立其等效電路模型。最後,將各組件之電路模型整合,以進行類比及數位信號傳輸系統分析。

In this thesis, the simulation methods of semiconductor laser and semiconductor optical amplifier are studied through the aid of SPICE software. They are applied to analyze the optical transmission system. First, an equivalent circuit model is developed for the semiconductor laser, based on the rate equations. The numerical calculation of material gain in quantum well laser is performed. The formula can be used in the circuit model by a curve-fitting method. Using SPICE, the threshold current and frequency response can be studied through the dc and ac analyses. The system bandwidth can then be obtained. The time delay, relaxation oscillation, and harmonic distortion can be studied through the transient and Fourier analyses. Second, a circuit model of semiconductor amplifier is developed and validated. Third, an equivalent circuit model is presented for fiber with loss. A time-delay model is applied to simulate the fiber dispersion. Besides, an equivalent circuit model is presented for the PIN photodiode. It is used in the receiving end of optical transmission system. Finally, above-mentioned circuit models are integrated to simulate an optical transmission system. Both digital and analog transmissions are studied.

中文摘要Ⅰ
英文摘要Ⅱ
誌 謝Ⅲ
目 錄Ⅳ
圖 目 錄Ⅵ
表 目 錄Ⅸ
第一章 緒論1
1.1前言1
1.2研究動機2
第二章 單模與多模態半導體雷射等效電路模型4
2.1材料增益的計算4
2.1-1簡介4
2.1-2分立的能階5
2.1-3簡併狀態密度6
2.1-4載子密度與準費米能量的關係6
2.1-5材料增益的計算結果7
2.1-6材料增益的調適12
2.2速率方程式12
2.3載子傳輸效應15
2.2-1理論與等效電路的建立15
2.3-2模擬結果與討論18
2.4多模態半導體雷射電路模型30
2.4-1理論與等效電路的建立30
2.4-2模擬結果與討論33
第三章 半導體光放大器與半導體雷射的統一模型40
3.1理論分析40
3.2行進波半導體光放大器43
3.2-1行進波半導體光放大器模型的建立43
3.2-2模擬結果與分析44
3.3 FABRY-PEROT半導體光放大器49
3.3-1 FABRY-PEROT半導體光放大器模型的建立49
3.3-2模擬結果與分析54
3.4半導體光放大器的交互增益調變66
3.4-1半導體光放大器的交互增益調變分析66
3.4-2模擬結果與分析67
第四章 光傳輸系統的模擬與分析72
4.1光纖與光二極體等效電路模型72
4.1-1光纖等效電路模型72
4.1-2光二極體等效電路模型73
4.2光傳輸系統模擬75
4.2-1光傳輸系統模擬的架構與各原件參數75
4.2-2類比傳輸系統模擬結果與分析75
4.2-3數位傳輸系統模擬結果與分析79
第五章 結論90
參考文獻91
作者簡介95

[1]J. Wilson and J. F. B. Hawkes, Optoelectronics, New Jersey: Prentice Hall Inc., 1989, p. 281.
[2]S. M. Sze, Physics of Semiconductor Device, 2nd Edition, New York: John Wiley & Sons Inc, 1981.
[3]L. A. Coldren, and S. W. Corzine, Diode Lasers and Photonic Intergrated Circuits, New York: Wiley, 1996.
[4]吳曜東,光纖通訊系統原理與應用,第五章,臺北市,全欣資訊,民國八十三年。
[5]S. Shimada and H. Ishio, Optical Amplifiers and Their Applications, New York: Wiley, 1994, chapter 3.
[6]M. J. Adams, J. V. Collins, and I. D. Henning, “Analysis of Semiconductor Laser Optical Amplifiers,” IEE Pro., vol. 132, pt. J, no. 1, pp. 58-63, 1985.
[7]J. Buus and R. Plastow, “A Theoretical and Experimental Investigation of Fabry-Perot Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron., vol. 21, no. 6, pp. 609-613, 1985.
[8]I. D. Henning, H. J. Adams, and J. V. Collins, “Performance Predictions from a New Optical Amplifier Model,” IEEE J. Quantum Electron., vol. 21, no. 6, pp. 609-617, 1985.
[9]J. Wang, H. Olesen, and K. E. Stubkjaer, “Recombination, Gain and Bandwidth Characteristics of 1.3-μm Semiconductor Laser Amplifiers,” J. Lightwave Technol., vol. 5, no. 1, pp. 184-189, 1987.
[10]Y. Aoki, “Properties of Fiber Ramman Amplifiers and Their Applicability to Digital Optical Communication Systems,” J. Lightwave Technol., vol. 6, no. 7, pp. 1225-1239, 1988.
[11]D. Cotter, “Stimulated Brillouin Scattering in Monomode Optical Fiber,” J. Opt. Commun., vol. 4, no. 1, pp. 10-19, 1983.
[12]C. Barnard, P. Myslinski, J. Chrostowski and M. Kaverad, “Analytical Model for Rare Earth Doped Fiber Amplifiers and Lasers,” IEEE J. Quantum Electron., vol. 30, no. 8, pp. 1817-1830, 1994.
[13]F. S. Lai, C. K. Liu, J. J. Jou, “Analysis of Distortions and Cross Modulations in Erbium-Doped Fiber Amplifiers,” IEEE Photonics Technol. Lett., vol. 11, no. 5, pp. 545-547, 1999.
[14]C. K. Liu, J. J. Jou, F. S. Lai, “Second-Order Harmonic Distortion and Optical Fiber Length in Erbium-Doped Fiber Amplifiers, ” IEEE Photonics Technol. Lett., vol. 7, no. 12, pp. 1412-1414, 1995.
[15]T. P. Lee, C. A. Burrus, J. A. Copeland, A. G. Dentai, and D. Marcuse, “Short-Cavity InGaAsP Injection Lasers: Dependence of Mode Spectra and Single-Longitudinal-Mode Power on Cavity Length,” IEEE J. Quantum Electron., vol. 18, no. 7, pp. 1101-1113, 1982.
[16]K. Petermann, “Theoretical Analysis of Spectral Modulation Behaviour of Semiconductor Injection Lasers,” Opt. Quantum Electron., no. 10, pp. 233-242, 1978.
[17]M. J. Adams and M. Osinki, “Longitudinal Mode Competition in Semiconductor Lasers Rate Equations Revisited,” IEE Proc., vol. 129, pt. I, no. 6, pp. 271-274, 1982.
[18]A. J. Lowery, “Model for Multimode Picosecond Dynamic Laser Chirp Based on Transmission Line Laser Model,” IEE Proc., vol. 135, pt. J, no. 2, pp. 126-132, 1988.
[19]D. Marcuse, ”Computer Model of An Injection Laser Amplifier,” IEEE J. Quantum Electron., vol. 19, no. 1, pp. 63-73, 1983.
[20]M. J. O’Mahony “Semiconductor Laser Optical Amplifiers for Use in Future Fiber Systems,” J. Lightwave Technol., vol. 6, no. 4, pp. 531-543, 1988.
[21]K. Hinton and T. Stephens, “Modeling High-Speed Optical Transmission Systems,” IEEE J. Sel. Areas Commun., vol. 11, no. 3, pp. 383-392, 1993.
[22]R. S. Tucker, “Circuit Model of Double-Heterojunction Laser Below Threshold,” IEE Proc., vol. 128, pt. I, no. 3, 1981.
[23]B. P. C. Tsou and D. L. Pulfrey, “A Versatile SPICE Model for Quantum-Well Lasers,” IEEE J. Quantum Electron., vol. 33, no. 2, pp. 246-254, 1997.
[24]H. A. Tafti, K. K. Kamath, G. Abraham, F. N. Farokhrooz and P. R. Vaya, “Circuit Modeling of Multimode Semiconductor Lasers and Study of Pulse Broadening Effect,” Electron. Lett., vol. 29, no. 16, pp. 1443-6445, 1993.
[25]N. R. Desai, K. V. Hoang, and G. J. Sonek, “Applications of PSPICE Simulation Software to the Study of Optoelectronic Integrated Circuits and Devices,” IEEE Trans. on Education., vol. 36, no. 4, pp. 357-362, 1993.
[26]L. F. Nagy and A. S. Marincic, “SPICE 2 Simulation of Monomode Lightwave Data Transmission System under Chirped Pulse Condition,” Electrotechnical Conference, 1991. Proceedings, 6th Mediterranean, vol. 1, pp. 692-695.
[27]A. Yariv, An Introduction to Theory and Applications of Quantum Mechanics, New York: Wiley, 1982, chapter 4.
[28]M. Rosenzweig, M. Möhrle, H. Düser, and H. Venghaus, “Threshold-Current Analysis of InGaAs-InGaAsP Multiquantum Well Separate-Confinement Lasers,” IEEE J. Quantum Electron., vol. 27, no. 6, pp. 1804-1811, 1991.
[29]H. D. Summers, P. Dowd, I.H. White, and M. R. T. Tan, “Calculation of Differential Gain and Linewidth Enhancement Factor in 980-nm InGaAs Vertical Cavity Surface-Emitting Lasers,” IEEE Photon. Technol. Lett., vol. 7, no. 7, pp. 736-738, 1995.
[30]G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, New York: Van Nostrand Reinhold, 1993, p. 238.
[31]R. Nagaragan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High Speed Quantum-Well Lasers and Carrier Transport Effects,” IEEE J. Quantum Electron., vol. 28, no. 10, pp. 1900-2008, 1992.
[32]D. Mcdonald and R. F. O’Dowd, “Comparison of Two- and Three-Level Rate Equations in the Modeling of Quantum-Well Lasers,” IEEE J. Quantum Electron., vol. 31, no. 2, pp. 1927-1934, 1995.
[33]S. Chelles, F. Devaux, D. Meichenin, D. Sigogne, and A. Carenco, “Extinction Ratio of Cross-Gain Modulated Multistage Wavelength Converters: Model and Experiments,” IEEE Photon. Technol. Lett., vol. 9, no. 6, pp. 758-760, 1997.
[34]M. M. K. Liu, Principles and Applications of Optical Communications, Chicago: IRWIN, chapter 5.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top