跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/04/02 01:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:朱雨其
研究生(外文):Yu-Chi Chu
論文名稱:運用本體論驅動模式及資料品質分析以整合異質性資訊源
論文名稱(外文):Integrating Heterogeneous Information Sources through Ontology-Driven Model and Data Quality Analysis
指導教授:楊鍵樵楊鍵樵引用關係
指導教授(外文):Chen-Chau Yang
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
中文關鍵詞:異質性資訊源資訊整合本體論調節器資料倉儲資料品質分析環境資訊系統
外文關鍵詞:heterogeneous information sourcesinformation integrationontologymediatordata warehousedata quality analysisenvironmental information system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:468
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:4
晚近由於資料庫與網路技術的快速發展,讓任何人都可以利用網路來尋找所需要的資料,是以在網路環境下的資料存取需求變得日益殷切。但是,分散在各處的資料包括了傳統的文數字資料、圖像資料、或是多媒體檔案,各自有其不同的儲存格式。這些資料格式可能隨時間而有所變化,彼此間互不相容,甚或衝突,於是在網路上構成一種異質性資訊源環境。在這種複雜且多變的環境下,如何有效且快速地對使用者提供整合性的服務,並且確保整合作業時的資料品質,已成為當下極具學理與實用價值的研究課題。
本文倡議一種包含前置整合階段、查詢階段及資料品質保證階段的三階段式運作機制來整合異質性資訊源。在前置整合階段,我們提出運用本體論來驅動資訊整合的作業模式,由於本體論是以概念的表徵為核心,所以在這個層次上的整合作用可以具有一定程度的語意互通效果。我們發展一套系統化的作業流程及相關的演算法;首先我們從現存的知識環境及已知的部分資訊源中構築個別性的本體論原型,而後將各個原型本體論作校正及合併等調整,以得到在特定應用領域中具有整合效用的本體論。
根據整合性的本體論,在查詢階段我們結合資料倉儲及調節器二項主要的整合方法。針對資訊源中週期性及靜態性的資料,我們運用調節器在網路執行檢索、蒐集及擷取工作,這些資料經過轉換、調合、彙總後再匯入資料倉儲,使得日後這類資料的查詢績效得以改善。至於具時效性及動態性的資料,則以本體論加以調合歧義化後,由調節器逕行回覆給使用者。
在資料品質保證階段,我們分成二個步驟進行;首先建立資料品質的實體模型,再運用資料品質成本/效益評估模型,尋求資料品質``最適使用"的狀態。資料品質實體模型是以屬性為基礎,並延用傳統的實體關聯式模型加以擴充,用以將資料品質的因子融入資訊整合的運作過程中,將資料區分為一般應用的屬性資料及提供品質訊息的品質資料,因而得以辨識資料的良窳與適用與否。其次,經由成本/效益評估模型的運算,可以在有限成本控制下針對最嚴重的不良資料作優先的修正處理。
本文闡述的方法可以使得資訊源的整合成果獲得相當改善,特別是在語意互通及資料品質這二方面。我們分別以「整合性環境資訊系統」及「XML/EDI電子商務系統」二個應用實例來佐證本文所倡議的方法的可行性。

Recently, remarkable advances in database and networking technologies have allowed people to search the Internet for the data they need. This raises the demand for information accessing on a network environment. However, the data scattered on a network environment (including text, graphic files, and multimedia) are usually stored in a variety of formats. This yields an environment of heterogeneous information sources because those data formats are usually varied as time goes on; not only are they not compatible, but some are in conflict with each other. In such a complicated and fast changing environment, the related problems of how to provide users an integrated service efficiently and effectively--meanwhile with data quality considerations--have become a significant research issue in both academia and the industry.
This dissertation proposes a three-phase operation mechanism, which consists of the front-end integration phase, the query phase, and the quality assurance phase to integrate information in a heterogeneous environment. We present a lightweight ontology-driven model (LODM), which is the major component to drive the integration process in the front-end integration phase.
An integrated ontology can be viewed as the kernel of concept representation; hence the semantic interoperability among heterogeneous information sources can be achieved at the concept level. We develop a systematic process and related algorithms to support the construction of the integrated ontology. First, we capture the ontologies from existing knowledge sources to form distinct prototype ontologies. Then, those distinct ontologies are aligned and merged to construct an integrated ontology for a specific application domain.
During the query phase, we associate the integrated ontology with two major integration methodologies, namely data warehousing approach and mediation approach. We develop an agent-based mediator for retrieving and gathering historic and static data from underlying sources. The gathered data will be transformed into the warehouse after appropriate conversion, reconcilement, and summarization. Therefore, queries for such information may be submitted to the warehouse exactly as to any database and obtain better performance. Regarding dynamic and real-time data, the mediator handles the queries instantaneously. The results from underlying sources will reconcile the ambiguity by using the integrated ontology, and return to users directly after integrated by the mediator.
Concerning the quality assurance phase, we introduce a two-step process to ensure data quality when performing information integration. We first construct a practical data quality model, then employ the cost/benefit evaluation model to determine the ``fit to use" criteria of data quality. The data quality model is built based upon the E-R Model extended with the consideration of data quality indicators and classifies data into the attribute data and the quality data. The cost/benefit evaluation model is then used to ferret out the poor-quality data and set priorities for improvement given limited resources.
The proposed approach in this dissertation can overall improve the results of information integration in both system performance and data quality. We use two examples, integrated environmental information system and XML/EDI e-Business system, to justify the feasibility of our methodologies.

Contents
1 Introduction 1
1.1 Challenges of Information Integration . . . . . . . . . . . . . . . . . . 2
1.2 An Overview of Various Types of Integration . . . . . . . . . . . . . . 5
1.2.1 Organization viewpoint . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Technology viewpoint . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 The Proposed Framework . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Research Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Related Work and Literature Review 13
2.1 Related Work on Information Integration Systems . . . . . . . . . . . 13
2.1.1 Data warehouse systems . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Mediator systems . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Related Work on Ontology Issues . . . . . . . . . . . . . . . . . . . . 19
2.2.1 What is an ontology? . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Projects in ontology design and development . . . . . . . . . . 20
2.3 Related Work on Data Quality . . . . . . . . . . . . . . . . . . . . . . 24
3 Integrating Domain-dependent Ontologies 26
3.1 The Role of Ontologies and Why Need It? . . . . . . . . . . . . . . . 26
3.2 Lightweight Ontology-Driven Model (LODM) . . . . . . . . . . . . . 29
3.3 Developing Ontologies for Information Integration . . . . . . . . . . . 30
3.3.1 Ontologies alignment and integration . . . . . . . . . . . . . . 35
3.3.2 Ontology enrichment . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Components for Query Phase . . . . . . . . . . . . . . . . . . . . . . 40
3.4.1 Wrappers and uniform protocol . . . . . . . . . . . . . . . . . 40
3.4.2 Agent-based mediators . . . . . . . . . . . . . . . . . . . . . . 42
3.4.3 Intelligent interfaces . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.4 Ontology server . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.5 Constraints/noti‾cation manager (CNM) . . . . . . . . . . . . 46
4 Ensuring Data Quality 48
4.1 Framework of Data Quality Assurance . . . . . . . . . . . . . . . . . 49
4.1.1 Data quality hierarchy . . . . . . . . . . . . . . . . . . . . . . 50
4.1.2 Process of data quality management . . . . . . . . . . . . . . 53
4.2 Attribute-Based Metadata Model . . . . . . . . . . . . . . . . . . . . 56
4.2.1 Metadata to support data quality . . . . . . . . . . . . . . . . 56
4.2.2 Understanding quality with metadata . . . . . . . . . . . . . . 57
4.3 Identifying and Evaluating Data Quality . . . . . . . . . . . . . . . . 60
4.3.1 Data quality identi‾cation . . . . . . . . . . . . . . . . . . . . 60
4.3.2 Cost/bene‾t evaluation . . . . . . . . . . . . . . . . . . . . . . 62
5 Case Studies 69
5.1 Integrated Environmental Information System . . . . . . . . . . . . . 69
5.1.1 The problems of environmental information . . . . . . . . . . 70
5.1.2 A query for integrated air quality information . . . . . . . . . 71
5.1.3 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Development of the Internet e-Business Systems . . . . . . . . . . . . 79
5.2.1 Coupling ontologies with Internet-based applications . . . . . 80
5.2.2 Combining UML and XML . . . . . . . . . . . . . . . . . . . 81
5.2.3 An e-Business example . . . . . . . . . . . . . . . . . . . . . . 83
5.2.4 The implementation process . . . . . . . . . . . . . . . . . . . 85
6 Conclusions and Future Work 92
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Appendix: Source Speci‾cation for Air Quality Information 96
BIBLIOGRAPHY 104

Bibliography
[1] Abiteboul, S., P. Buneman, and D. Suciu, Data on the Web, Morgan Kaufmann
Publishers, San Francisco, CA USA (2000).
[2] Arens, Y., C. Chee, C. Hsu, and C. Knoblock, \Retrieving and integrating data
from multiple information sources," International Journal on Intelligent and Co-operative
Information Systems, 2:2 (1993).
[3] Arens, Y., C. Knoblock, and E.-M. Shen, \Query reformation for dynamic infor-mation
integration," Journal on Intelligent Information Systems, 6:2/3 (1996)
99-130.
[4] Arpirez, J., WebODE User Manual, Technical Report, Technical School of Com-puter
Science, Madrid (2001).
[5] Ballou, D. P., and H. L. Pazer, \Cost/quality tradeo®s for control procedures
in information systems," International Journal of Management Science, 15:6
(1987), 509-521.
[6] Barja, M. L., T. A. Bratvold, J. Myllymaki, and G. Sonnenberger, \Informia: a
mediator for integrated access to heterogeneous information sources," Proceed-ings
of the Conference on Information and Knowledge Management (CIKM'98),
Washington DC, USA (1998), 234-241.
[7] Barnet, V., and T. Lewis, Outliers in Statistical Data, Wiely Publishing, USA
(1994).
[8] Barquin, R., and H. Edelstein, Building, Using, and Managing the Data Ware-house,
PTR Publishing, NJ USA (1997).
[9] Bayardo, et al., \InfoSleuth: semantic integration of information in open and
dynamic environments," Proc. of the ACM International Conference on Man-agement
of Data (SIGMOD), Tucson, AZ USA (1997).
[10] Berthold, M., and D. J. Hand (Editors), Intelligent Data Analysis, Springer-Verlag,
Berlin Germany (1999).
[11] Booch, G., J. Rumbaugh, and I. Jacobson, The Uni‾ed Modeling Language User
Guide, Addison-Wesley, Reading, MA USA (1998).
[12] BizTalk. http://www.biztalk.org/
[13] Borgida, A. \Description logics in data management," IEEE Trans. on Knowl-edge
and Data Engineering," 7:5 (1995).
[14] Borgo, S., N. Guarino, C. Masolo, and G. Vetere, \Using a large linguistic ontol-ogy
for Internet-based retrieval of object-oriented components," Proc. of 9th Int'l
Conf. on Software Engineering and Knowledge Engineering (SEKE 97), Madrid,
Spain (1997).
[15] Calvance, D. et al., Towards heterogeneous multimedia information system: the
Garlic approach, Technical Report, IBM Almaden Research Center (1994).
[16] Chandrasekaran, B., J. R. Josephson, and V. R. Benjamins, \What are ontolo-gies,
and why do we need them?" IEEE Intelligent Systems, January/February
(1999), 20-26.
[17] Chawathe, S., H. Garcia-Molina, and J. Widom, Constraint management in
loosely coupled distributed databases, Technical Report, Computer Science De-partment,
Stanford University, (1993).
[18] Chawathe, S., H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou,
J. Ullman, and J. Widom, \The TSIMMIS project: integration of heterogeneous
information sources," Proceedings of IPSI Conference, Tokyo, Japan (1994), 7-18.
[19] Chiu, W. W., R. C. Lee, and Q. Chen, \Using type inference and induced rules
to provide intensional answer," Proc. of IEEE Int'l Conference on Data Engi-neering,
(1991) 396-403.
[20] Chu, Y. C., C. C. Lien, and C. C. Yang, \InfoHub: a °exible system for retrieving
and integrating heterogeneous information sources," Proceedings of Workshop on
Distributed System Technologies and Applications, Taiwan, ROC (1997), 597-602.
[21] Chu, Y. C., S. S. Yang, and C. C. Yang, \Enhancing data quality through
attribute-based metadata and cost evaluation in data warehouse environments,"
Journal of the Chinese Institute of Engineers, 24:4 (2001) 497-507.
[22] Chu, Y. C., H. Featherstone, and C. C. Yang, \Implementing Internet-based
e-Business applications through the coupling of object models and XML/EDI,"
Proc. of the ICS2000 Workshop on Computer Network, Internet, and Multimedia,
Chaiyi, Taiwan (2000), 199-206.
[23] Chu, Y. C., D. S. Tsai, Y. C. Wu, H. S. Cheng, and C. C. Yang, \Constructing an
adaptive data extractor for gathering information on WWW," (in Chinese) Proc.
of Fifth Conference on Arti‾cial Intelligence and Applications, Taipei, Taiwan
(2000), 669-676.
[24] Conallen, J., Building Web Applications with UML, Addison-Wesley, Reading,
MA USA (1999).
[25] Crane‾eld, S., and M. Purvis, \UML as an ontology modelling language," Pro-ceedings
of Workshop on Intelligent Information Integration (IJCAI'99), Stock-holm,
Sweden (1999).
[26] Cui, Z., D. Jones, and P. O'Brien, \Issues in ontology-based information inte-gration,"
Proceedings of Workshop on Ontologies and Information Sharing (IJ-CAI'01),
Seattle, WA USA (2001).
[27] DWQ Project. http://www.dbnet.ece.ntua.gr/
»
dwq/
[28] ebXML White Papers. http://www.ebxml.org/
[29] Eriksson, H., R. W. Fergerson, Y. Shahar, and M. A. Musen. \Automatic gen-eration
of ontology editors," Proc. of 12th Workshop on Knowledge Acquisition
for Knowledge-based systems, Ban®, Alberta Canada, (1999).
[30] Farqhuar, A. et al., Collaborative Ontology Construction for Information
Integration, Technical Report (KSL-95-69), Knowledge Systems Laboratory,
Stanford University, Stanford, CA USA (1995). http://ksl-web.stanford.
edu/publications/
[31] Fensel, D., Ontologies: Silver Bullet for Knowledge Management and Electronic
Commerce, Springer-Verlag, Berlin, Germany (2000).
[32] Fonseca, F., M. Egenhofer, and C. Davis, \Ontology-driven information integra-tion,"
AAAI Workshop on Spatial and Temporal Granularity, Austin, TX USA
(2000).
[33] Fox, M., and M. GrÄ uninger, \Enterprise modelling," AI Magazine, 19:3 (1998)
109-121.
[34] Garcia-Molina, H., W. J. Labio, J. L. Wiener, Y. Zhuge, \Distributed and par-allel
computing issues in data warehousing," Proceedings of ACM Principles of
Distributed Computing Conference, (1999).
[35] Garcia-Molina, H., J. D. Ullman, and J. Widom, Database Systems Implementa-tion,
Prentice-Hall Inc., NJ USA (2000).
[36] GEMET. General European Multi-Lingual Environmental Thesaurus, European
Environmental Agency (1999). http://www.eea.eu.int/
[37] Glushko, R., J. Tenenbaum, and B. Meltzer, \An XML framework for agent-based
E-commerce, Communication of the ACM, 42:3 (1999), 106-114.
[38] G¶ omez-P¶erez, A., \Towards a framework to verify knowledge sharing technol-ogy,"
Expert Systems with Applications, 11:4 (1996), 519-529.
[39] G¶ omez-P¶erez, A., \Knowledge sharing and reuse," in Liebowitz editor, The
Handbook on Applied Expert Systems, ED CRC Press (1998).
[40] Gruber, T. R., Towards Principles for the Design of Ontologies Used for Knowl-edge
Sharing, KSL TR93-04, Knowledge Systems Laboratory, Stanford Univer-sity
(1993).
[41] Gruber, T. R., \A translation approach to portable ontologies," Knowledge Ac-quisition,
5:2 (1993), 199-220.
[42] Guarino, N., \Formal ontology and information systems," Formal Ontology in
Information Systems, IOS Press, Amsterdam, the Netherlands (1998).
[43] Guarino, N., C. Masolo, and G. Vetere, \OntoSeek: content-based access to the
web," IEEE Intelligent Systems 14:3 May/June (1999), 70-80.
[44] Hsu, C. C., W. W. Chu, and R. K. Taira, \A knowledge base for retrieving images
by contents," IEEE Trans. on Knowledge and Data Engineering, 8:4 (1996).
[45] Huh, Y. U., F. R. Keller, T. C. Redman, and A. R. Watkins, \Data quality,"
Information and Software Technology, 32:8 (1990) 559-565.
[46] Humpherys, B., and D. Lindberg, \The UMLS project: making the conceptual
connection between users and the information they need," Bulletin of the Medical
Library Association, 81:2 (1993).
[47] Hwang, C. H., Incompletely and imprecisely speaking: using dynamic ontologies
for representing and retrieving information, Technical Report, Microelectronics
and Computer Technology Corporation (MCC) (1999).
[48] Inmon, W. H., Building the Data Warehouse 2/e, Wiley Computer Publishing
(1996).
[49] Jarke, M., M. A. Jeusfeld, C. Quix, and P. Vassiliadis, \Architecture and quality
in data warehouse: an extended repository approach," Information Systems,
24:3 (1999), 229-253 .
[50] Jasper, R., and M. Uschold, \A framework for understanding and classifying
ontology applications," 12th Workshop on Knowledge Acquisition, Modeling and
Management (KAW'99), Ban®, Alberta Canada (1999).
[51] Jones, D. M., T. Bench-Capon, and P. Visser, \Methodologies for ontology de-velopment,"
Proc. of IT&KNOWS Conference of the 15th IFIP World Computer
Congress, Budapest, Hungary (1998).
[52] Kaplan, D., R. Krishnan, R. Padman, and J. Peters, \Assessing data quality
in accounting information systems." Communications of the ACM, 41:2 (1998),
72-78.
[53] Kashyap, V., and A. Sheth, \Semantic similarities between objects in multi-ple
databases: a context-based approach," International Journal on Very Large
Databases, 5:4 (1996).
[54] Kashyap, V., \Design and creation of ontologies for environmental information
retrieval," 12th Workshop on Knowledge Acquisition, Modeling and Management
(KAW'99), Ban®, Alberta Canada (1999).
[55] Kimball, R., The Data Warehouse Toolkit, Wiley Publishing, (1996).
[56] Klein, M., D. Fensel, F. van Harmelen, and I. Horrocks, \The relation between
ontologies and schema language: translating OIL-speci‾cations in XML-schema,"
Proceedings of the Workshop on Applications of Ontologies and Problem-Solving
Methods, Berlin, Germany (2000).
[57] Kwon, O.-W., M.-C. Kim, and K.-S. Choi, \Query expansion using domain-adapted,
weighted thesaurus in an extended Boolean model," Proceedings of the
Conference on Information and Knowledge Management (CIKM'94), Gaithers-burg,
MD USA (1994), 140-146.
[58] Lenat, D., and R. Cuha, Building Large Knowledge-Based Systems, Addison-Wesley,
Reading, MA USA (1990).
[59] Lenat, D., \CYC: A large-scale investment in knowledge infrastructure," Com-munications
of the ACM, 38:11 (1995), 33-38. For further information, refer to
http://www.cyc.com/
[60] Li, Q., P. Shilane, N. F. Noy, and M. A. Musen., \Ontology acquisition from
on-line knowledge sources," AMIA Annual Symposium, Los Angeles, CA USA
(2000).
[61] Linthicum, D., Enterprise Application Integration, Addison-Wesley, Reading,
MA USA (2000).
[62] Litwin, W., L. Mark, and N. Roussopoulos, \Interoperability of multiple au-tonomous
databases," ACM Computing Survey, 22:3 (1990), 267-293.
[63] MacGregor, R. M. \Representing Rei‾ed Relations in Loom," Journal of Exper-imental
and Theoretical Arti‾cial Intelligence, 5 (1993), 179-183.
[64] Marchal, B. et al., Guidelines for using XML for electronic data interchange,
(1998). available at http://www.xmledi.net/
[65] Miller, G., \WordNet: a lexical database for English," Communications of the
ACM, 38:11 (1995), 39-41. For copies of the database and associated software,
see http://www.cogsi.princeton.edu/
»
wn/
[66] Naumann, F., and U. Lsesr, \Quality-driven integration of heterogeneous infor-mation
systems," Proceedings of the 25th VLDB Conference, Edinburgh, Scot-land
(1999).
[67] Naumann, F., and C. Rolker, \Assessment methods for information quality crite-ria,"
Proceedings of the 2000 MIT Conference on Information Quality (IQ2000),
Boston, MA, USA (2000).
[68] Oracle9i Products. http://www.oracle.com/ip/index.html
[69] Orr, K., \Data quality and systems theory." Communications of the ACM, 41:2
(1998), 66-71.
[70] Pan, M. J., S. K. Chang, and C. C. Yang, \A two-level metadata dictionary
approach for semantic query processing in multidatabase systems," Int'l Journal
of Software Engineering and Knowledge Engineering, 3:2 (1993), 231-255.
[71] Parsaye, K., and M. Chignell, Intelligent Database Tools and Applications: Hy-perinformation
Access, Data Quality, Visualization, Automatic Discovery, Wiley
Publishing (1993).
[72] RosettaNet. http://www.RosettaNet.org/
[73] Rothenberg, J., \Metadata to support data quality and longevity," Proceedings
of 1st IEEE Metadata Conference, (1996).
[74] Smith, H., and K. Poulter, \Share the ontology in XML-based trading architec-ture,"
Communication of the ACM, 42:3 (1999), 110-111.
[75] Sowa, J., Knowledge Representation: Logical, Philosophical, and Computational
Foundation, Brooks/Cole, Paci‾c Grove, CA USA (2000).
[76] Stuckenschmidt, H., and H. Wache, \Context modeling and transformation for
semantic interoperability," Proceedings of KRDB, (2000).
[77] SyBase Database Servers. http://www.sybase.com/products/databaseservers/
[78] Tayi, G., and T. Ballou, \Examining data quality," Communications of the ACM,
41:2 (1998).
[79] Uschold, M., and M. GrÄ uniger, \Ontologies: principles, methods and applica-tions,"
Knowledge Engineering Review, 11:2 (1996), 93-136.
[80] Uschold, M., \Creating, integrating and maintaining local and global ontologies,"
Proceedings of 14th European Conference on Arti‾cial Intelligence (ECAI'00),
Berlin, Germany (2000).
[81] van Heijst, G., A. T. Schreiber, and B. J. Wielinga, \Using explicit ontologies
for KBS development," Intelligent Journal of Human-Computer Studies, 46:2/3
(1997), 193-292.
[82] Visser, U., H. Stuckenschmidt, G. Schuster, and T. VÄ ogele, \Ontologies for
geographic information processing," To appear in Computers in Geosciences.
http://www.tzi.de/
[83] Wache, H., T. VÄ ogele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann
and S. Hubner, \Ontology-based integration of information - a survey of existing
approaches," Submitted to IJCAI 2001 Workshop on Ontologies and Information
Sharing, (2001). http://www.tzi.de/
[84] Wand, Y., and R. Wang, \Anchoring data quality dimensions in ontological
foundations," Communications of the ACM, 39:11 (1996), 86-95.
[85] Wang, R. Y., M. P. Reddy, and H. B. Kon, \Toward quality data: an attribute-based
approach," Decision Support Systems, 13 (1995) 349-372.
[86] Wang, R. Y., V. C. Storey, and C. P. Firth, \A framework for analysis of data
quality research," IEEE Trans. Knowledge and Data Engineering, 7:4 (1995),
623-640.
[87] Weinstein, P. C., and W. P. Birmingham, \Comparing concepts in di®erentiated
ontologies," 12th Workshop on Knowledge Acquisition, Modeling and Manage-ment
(KAW'99), Ban®, Alberta Canada (1999).
[88] Welty, C., and J. Jenkins, \An ontology for subject," International Journal of
Knowledge and Data Engineering, 31:2 (1999), 155-182.
[89] Wiederhold, G., \Mediators in the architecture of future information systems,"
IEEE Computer, 25:3 (1992), 38-49.
[90] Wright, T., Statistical Methods and Improvement of Data Quality, Academic
Press, USA (1984).
[91] Yang, S. S., An Evaluation Mechanism for Data Quality Assurance in Data Ware-house
Environments, (in Chinese) Master Thesis, National Taiwan University of
Science and Technology, (1999).
[92] Yen, K. J., Design and Implementation of Mediator in the Environment of Het-erogeneous
Information Sources, (in Chinese) Master Thesis, National Taiwan
University of Science and Technology, (1997).
[93] Zahedi, F., Intelligent Systems for Business: Expert Systems with Neural Net-works,
Wadsworth Publishing Company, Belmont, CA USA (1993).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top