跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/16 19:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:孫宗瀛
研究生(外文):Tsung Ying Sun
論文名稱:模糊系統自動建模:使用強化學習機制的放射狀基函數類神經網路為基礎的模糊推理系統
論文名稱(外文):On the Self-Construction of Fuzzy System Modeling: A Fuzzy Reasoning System Based on the Integration of Radial Basis Function Neural Network with Reinforcement Learning Mechanism
指導教授:楊英魁楊英魁引用關係
指導教授(外文):Ying Kue Yang
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:175
中文關鍵詞:模糊系統自動建模強化學習放射狀基函數類神經網路類神經模糊系統模糊推論系統
外文關鍵詞:Self-constructing of fuzzy System modelingreinforcement learningRadial Basis Function Neural NetworkNeuro-Fuzzy Systemfuzzy inference system
相關次數:
  • 被引用被引用:8
  • 點閱點閱:863
  • 評分評分:
  • 下載下載:104
  • 收藏至我的研究室書目清單書目收藏:2
在實際世界應用中,具備學習能力的規則式模糊系統(rule-based fuzzy system),擁有非常卓越的特性足以解決各種困難的問題。但是,獲得可靠的模糊知識庫,卻一直都是建構規則式模糊系統的瓶頸。本論文的研究主題,是把類神經網路(neural networks, NN)的學習能力與模糊推論系統(Fuzzy Inference System, FIS)整合於一體,建立一個可以自動建構規則式模糊系統知識庫的類神經-模糊系統(Neuro-Fuzzy System, NFS)。研究的目標,是自動建構一個以短暫差異強化學習(Reinforcement Learning with Temporal Difference, TD(l) RL)方法為基礎的規則式模糊系統。TD(l)強化學習是一種極具威力的學習方法,特別對於定義困難(ill-defined)或某些無法應用監督式學習的情況。
本論文中,規則式模糊系統被放射狀基函數類神經網路(Radial Basis Function Neural Network, RBFNN)表現,當做學習與調整的設施。這個稱為模糊推理放射狀基函數類神經網路(Fuzzy-Reasoning Radial Basis Function Neural Network, F2RBF2N)的架構,是由兩個子網路組成:動作評斷網路(Action Critic Network, ACN)和動作選擇網路(Action Selection Network, ASN),每個子網路僅需三個神經層(neural layer)。ASN與一個模糊推理(fuzzy reasoning)是功能等價,擔任規則式模糊系統的角色,用來建立目標系統的輸入空間至輸出空間的對應,以便產生模糊系統的輸出去控制目標系統。由於RBFN與規則式模糊系統之間的等價關係,可以省略模糊推理機制的模糊化(fuzzification)和解模糊化(defuzzification)介面,使得ASN只需要三個神經層。ACN的功能是在每個時間階段產生強化學習程序所需的信賴評斷預測信號(credits critic prediction signal),以便修正ASN的實際輸出;另外ACN也參照目標系統現況所產生的外部強化信號(external reinforcement signal),轉換成一個啟發式的內部強化信號(heuristic internal reinforcement signal),做為ASN調適及學習的依據。ASN與ACN共用RBFNN的兩個神經層,使F2RBF2N的網路架構比其他的NFS架構更為簡單,不只可以簡化網路拓樸的複雜度,更可以因為降低網路的計算成本,使得系統的即時處理更高。
本論文提出的F2RBF2N已經證明擁有由經驗學習的能力,這個系統不只可以線上地產生規則,而且可以在環境或受控目標系統發生變化時,能夠即時地調整模糊規則。
A rule-based fuzzy system with learning capability has excellent features to solve many difficult problems in real-world applications. However, the bottleneck of constructing a rule-based fuzzy system is to obtain a reliable fuzzy knowledge base. The subject of this thesis is therefore proposing to integrate a neural network (NN) with a fuzzy inference system (FIS) to generate a neural-fuzzy system (NFS) so that the NFS has the learning capability to self-construct the fuzzy knowledge base of the system. This research also includes developing a methodology to create a self-constructing rule-based fuzzy system based on reinforcement learning with Temporal Difference TD(l) method. The reinforcement learning with TD(l) method is one of the powerful learning methods, specially for ill-defined systems or some situations to which supervised learning method is not applicable.
In this thesis, the rule-based fuzzy system is represented by radial basis function neural network (RBFNN) for learning and tuning facilities. The network architecture, called Fuzzy-Reasoning Radial Basis Function Neural Network (F2RBF2N), is composed of two sub-networks: Action Critic Network (ACN) and Action Selection Network (ASN). There are only three neural layers in each sub-network. The function of ASN is equivalent to that of a fuzzy reasoning system The ASN is to serve as a rule-based fuzzy system performing the mapping function from input space to output space of a controlled target system. Due to the functional equivalence between RBFNN and fuzzy system, the layers performing fuzzification and defuzzification functions can be eliminated so that there are only three neural layers in ASN. The function of ACN is to generate credit critic prediction signals at each time step for reinforcement learning procedure in order to modify the actual outputs of ASN. In addition, ACN also refers to the external reinforcement signals generated from current status of the target system, and transforms those signals into heuristic internal reinforcement signals for the learning and tuning mechanism in ASN. The sharing of two RBFNN neural layers by both ASN and ACN not only makes the F2RBF2N simpler than other NFSs on network architecture but also reduces the cost of computation because of simplified network topology. The ability of real-time processing by our proposed system is therefore improved.
The proposed F2RBF2N in this thesis is proved having the ability to perform well the unsupervised learning from experience. The system can not only on-line generate but also tune the rules in the system as its associated environment or controlled plant is changed.
圖索引 v
表格索引 viii
定理索引 ix
定義索引 x
第一章緒論 1
1.1 系統建模問題 2
1.2 規則式模糊系統與灰箱局部建模策略 5
1.3 模糊系統自動建模方法的演進 9
1.4 以NFS自動建模的限制 12
1.5 本研究的目的 13
1.6 論文架構 15
第二章模糊系統、類神經網路與類神經模糊系統17
2.1 模糊集合理論與模糊邏輯 20
2.1.1 基本定義 21
2.1.2 模糊集合的基本運算 25
2.1.3 模糊邏輯(fuzzy logic) 28
2.2 規則式模糊系統 33
2.2.1 規則式模糊系統的種類 33
2.2.2 規則式模糊系統的推理機制 37
2.2.3 模糊基函數(Fuzzy Basis Function, FBF) 43
2.2.4 規則式模糊系統模式鑑別的方法 45
2.3 類神經網路(Artificial Neural Networks) 49
2.3.1 學習機制 50
2.3.1-1 跟隨教師一起學習 52
2.3.1-2 不跟隨教師一起學習 54
2.3.2 類神經網路基本概念 60
2.3.3 多層認知器網路 66
2.3.4 放射狀基函數類神經網路 68
2.4規則式模糊系統自動建構的方法論探討73
2.4.1 以最佳化技術為主的建模方法74
2.4.2 以聚類分析為主的建模方法74
2.4.3 以啟發式為主的建模方法75
2.4.4 混合的智慧型技術為主的建模方法76
2.4.5 類神經-模糊混合式的建模方法77
2.5 整合的模糊-類神經系統 79
2.5.1 模糊-類神經網路80
2.5.2 以監督式學習為主的類神經-模糊系統83
2.4.2 類神經-模糊系統78
2.6 改良類神經-模糊系統的動機89
2.6.1 監督式類神經-模糊模式的缺點89
2.6.2 改良NFSL模式的動機及發展的方法90
第三章以強化學習的放射狀基函數類神經網路為主的模糊推理系統93
3.1 採用NFRL模式的NFS96
3.1.1 ARIC98
3.1.2 GARIC102
3.1.3 FALCON-R106
3.2 F2RBF2N的基本架構 109
3.2.1 類似神經元的評斷者(Neuron-like Critic)110
3.2.2 F2RBF2N的邏輯結構 111
3.2.3 ASN的功能 112
3.2.4 ACN的功能 115
3.2.5 F2RBF2N的實踐 116
3.3 以RBFNN為主的單值規則式模糊推理系統 118
3.4 F2RBF2N的強化學習機制 124
3.4.1 短暫差異方法(Temporal Difference method, TD(l))124
3.4.2 合格紀錄(eligibility trace)130
3.4.3 F2RBF2N的ASN學習機制 134
3.4.4 F2RBF2N的ACN學習機制 140
3.4.5 隱藏層節點的建立 142
3.5 結論 145
第四章實驗與結果 147
4.1 推車-竿平衡系統 148
4.1.1 實驗的程式設計 150
4.2 實驗的結果 155
第五章結論 165
5.1 F2RBF2N與各種AHC模式的比較167
5.1.1 主要特徵的比較167
5.1.2 網路神經元的特性比較169
5.1.3 強化學習方法的比較170
5.2 本論文的研究成果171
5.2.1 F2RBF2N的發展回顧172
5.2.2 F2RBF2N的特色172
5.2.3 研究成果173
5.3 未來的展望 175
參考文獻 176
附錄 首字母縮略專有名詞列表189
1.S. Abe and M.-S. Lan, “Fuzzy rule extraction directly from numerical data for function approximation,” IEEE Trans. on SMC., 25: 119-129, 1995.
2.S. Abe and M.-S. Lan, “A method for fuzzy rule extraction directly from numerical data and its application to pattern,” IEEE Trans. on Fuzzy Systems, 3: 18-28, 1995.
3.H. Adeli and S.-L. Hung, Machine Learning: Neural Networks, Genetic Algorithms and Fuzzy Systems, John Wiley & Sons, New York, 1995.
4.R. Babuška and H. B. Verbruggen, “An overview of fuzzy modeling for control,” Control Engineering Practice, 4(11): 1593-1606, 1996.
5.R. Babuška and H. B. Verbruggen, “Fuzzy set methods for local modeling and identification,” In R. Murray-Smith and T. A. Johansen (Eds), Multiple Model Approaches to Modeling and Control, chapter 2, pp75-100. Taylor & Francis, London, 1997.
6.R. Babuška and H. B. Verbruggen, “Constructing fuzzy models by product space clustering,” in Fuzzy model identification: selected approaches, H. Hellendoorn and D. Driankov (Eds.), 53-90, Springer-Verlag Berlin Heidelberg, 1997.
7.R. Babuška, Fuzzy Modeling for Control, Kluwer Academic Publishers, 1998.
8.A.G. Barto, R.S. Suton, and C.W. Aderson, “Neuronlike adaptive elements that can solve difficult learning control problems,” IEEE Trans. on Systems, Man, and Cybernetics, SMC-13(5):834-847, 1983.
9.A.G. Barto, “Reinforcement learning and adaptive critic methods,” in Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches, D.A. White and D.A. Sofgs, (Eds.), New York: Van Nostrand Reinhold, 469-491. 1992.
10.A.G. Barto, “Reinforcement learning,” in Handbook of Brain Theory and Neural Network, A.A. Michael Ed. The MIT Press, 804-809, 1995.
11.A.G. Barto, “Reinforcement learning in motor control,” in Handbook of Brain Theory and Neural Network, A.A. Michael Ed. The MIT Press, 809-813, 1995.
12.H.R. Berenji and P. Khedkar, “Learning and Tuning Logic Controllers Through Reinforcements,” IEEE Trans. on Neural Networks, 3(5): 724-740, 1992.
13.M.R. Berthold and K.-P Huber, “Constructing fuzzy graphs from examples,” An International Journal Intelligent Data Analysis, 3(1): 37-53, 1999.
14.A.E. Bryson and Y.C. Ho, Applied Optimal Control, Bleisdell, 1969.
15.M.D. Brown, D.G. Lightbody, and G.W. Irwin, “Nonlinear internal model control using local model networks,” IEEE Proceedings, 144(6): 505-514, 1997.
16.J.J. Buckley and Y. Hayashi, “Numerical relationships between neural nets, continuous function and fuzzy systems,” Fuzzy Sets and Systems, 60: 1-8, 1993.
17.J.J. Buckley and Y. Hayashi, “Hybrid neural nets can be fuzzy controllers and fuzzy expert systems,” Fuzzy Sets and Systems, 60: 135-142, 1993.
18.W.M. van Buijtenen, G. Schram, R. R. Babuška and H. B. Verbruggen, “Adaptive fuzzy control of satellite attitude by reinforcement learning,” IEEE Trans. on Fuzzy Systems, 6(2): 185-194, May 1998.
19.G.A. Carpenter, S. Grossberg and D. B. Rosen, “Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system,” Neural Networks, 4: 759-771, 1991.
20.G.A. Carpenter and S. Grossberg, “Fuzzy ARTMAP: A synthesis of neural networks and fuzzy logic for supervised categorization and nonstationary prediction,” in Fuzzy Sets, Neural Networks, and Soft Computing, R.R. Yager and L.A. Zadeh, (Eds.), Van Nonstrand Reinhold, New York, 1994.
21.J. L. Castro, “Fuzzy logic controllers are universal approximators,” IEEE Trans. on SMC., 25: 629-635, 1995.
22.J. L. Castro, “Fuzzy systems with defuzzification are universal approximators,” IEEE Trans. on SMC., 26: 149-152, 1996.
23.C. T. Chen, Y. J. Chen and C. C. Teng, “Simplification of fuzzy-neural systems using similarity analysis,” IEEE Trans. on SMC., 26: 344-354, 1996.
24.S. Chen and S.A. Billings, “Representations of nonlinear systems: The NARMAX model,” International Journal of Control, 49(3):1013-1032, 1983.
25.S. Chen and S.A. Billings, C. Cowan and P. Grant, “Non-linear systems identification using radial basis functions,” International. Journal of Systems Science, 21(12): 2513-2539, 1990.
26.S. Chen, S.A. Billings, C. Cowan and P. Grant, “Practical identification of narmax models using radial basis functions,” International. Journal of Control, 52: 1327-1350, 1990.
27.S. Chen, C.F.N. Cowan and P. M. Grant, “Orthogonal least squares learning for radial basis function networks,” IEEE Trans. On Neural Networks, 2(2): 302-309, 1991.
28.S. Chen, “Recursive hybrid algorithm for non-linear systems identification using radial basis functions,” International Journal of Control, 55: 1051-1070, 1992.
29.S. Chen and S. Billings, “Neural networks for non-linear system identification,” International Journal of Control, 56: 319-346, 1992.
30.S. Chen, B. Mulgrew and P.M. Grant, “A clustering technique for digital communications channel equalization using radial basis function networks,” IEEE Trans. on Neural Networks, 4, 1993.
31.S. Chen, S. McLaughlin, B. Mulgrew and P.M. Grant, “Reconstruction of binary signals using an adaptive radial basis function equalizer,” IEE Proceedings Communications, 143, Aug. 1996.
32.J.-Q. Chen, Y.-G. Xi and Z.-J. Zhang, “A clustering algorithm for fuzzy model identification,” Fuzzy Sets and Systems, 98: 319-329, 1998.
33.Y.-H. Cheng and C. Shin Lin, “A learning algorithm for radial basis function networks: with the capability of adding and pruning neurons,” IEEE Int. Conf. On Neural Networks, 1: 797-801, 1994.
34.Vladimir Cherkassky and Filip Mulier, Learning From Data: Concepts, Theory, and Methods, John Wiley & Sons, Inc., 1998.
35.E.S. Chng, S. Chen and B. Mulgrew, “Gradient radial basis function networks for nonlinear and nonstationary time series prediction,” IEEE Trans. On Neural Networks, 7: 190-194, 1996.
36.K.B. Cho and B.H. Wang, “Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction,” Fuzzy Sets and Systems 83: 325-339, 1996.
37.O. Cordon and F. Herrera, “Identification of linguistic fuzzy models by means of genetic algorithms,” in Fuzzy model identification: selected approaches, H. Hellendoorn, D. Driankov (Eds.), 215-250, Springer-Verlag Berlin Heidelberg, 1997.
38.Ernest Czogała and Jacek Łęski, Fuzzy and Neuro-Fuzzy Intelligent Systems, Physica-Verlag Heidelberg, 2000.
39.M. Delgado, A.F. Gomez-Skarmeta and F. Martin, “A fuzzy clustering-based rapid prototyping for fuzzy rule-based modeling,” IEEE Trans. on Fuzzy Systems, 5(2): 223-233, May 1997.
40.M.R. Emami, I.B. Turksen and A.A. Goldengerg, “Development of a systematic methodology of fuzzy logic modeling,” IEEE Trans. on Fuzzy Systems, 6(3): 346-361, Aug. 1998.
41.Meng Joo Er, J. Liao and J. Lin, “Fuzzy neural networks-based quality prediction system for sintering process,” IEEE Trans. on Fuzzy Systems, 8(3): 314-324, June 2000.
42.J. A. Franklin,”Input space representation for refinement learning control,” Proc. IEEE Int. Symp. Intell. Control, 115-122, 1989.
43.B. Fritzke, “Transforming hard problems into linearly separable ones with incremental radial basis function networks,” International Workshop on Neural Networks, Proceeding. Volume I/II (1994/1995), VU University Press, 1996.
44.Robert Fullér, Introduction to Neuro-Fuzzy Systems, Physica-Verlag Heidelberg, 2000.
45.M.E. Harmon and S S. Harmon, “Reinforcement Learning: A Tutorial,” Available on http://www-anw.cs.umass.edu.
46.E.J. Hartman, J.D. Keeler and J.M. Kowalski, “Layered neural networks with gaussian hidden units as universal approximations,” Neural Computation, 2: 210-215, 1990.
47.S. Haykin, Neural networks: A comprehensive foundation, 2nd Edition, Prentice-Hall International Inc., New Jersey, 1999.
48.R. Nielsen Hecht, Neurocomputing, Addison-Wesley, Reading, MA, 1989.
49.R. Nielsen Hecht, “Counterpropagation networks,” Proc. Int. Conf. On Neural Networks, vol. 2: 593-611, New York, 1987.
50.J. Hertz, A. Krogh and R. G. Palmer, Introduction to the Theory of Neural Computation, Addison-Wesley, New York, 1991.
51.J. Hollatz, “Fuzzy identification using methods of intelligent data analysis,” in Fuzzy model identification: selected approaches, H. Hellendoorn, D. Driankov (Eds.), 165-192, Springer-Verlag Berlin Heidelberg, 1997.
52.S. Horikawa, T. Furuhashi and Y. Uchikawa, “On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm,” IEEE Trans. On Neural Networks, 4: 801-806, 1992.
53.K. Hornik, M. Stinchombe and H. White, “Multilayer feedforward networks are universal approximators,” Neural Computation, 2: 359-366, 1989.
54.K. J. Hunt, R. Haas and R. M. Smith, “Extending the Functional Equivalence of Radial Basis Function Networks and Fuzzy Inference Systems,” IEEE Trans. On Neural Networks, 7(3), May 1996.
55.J.-S. Jang, “Self-learning fuzzy controllers based on temporal back propagation,” IEEE Trans. on Neural Networks, 3(6): 741-723, 1992.
56.J.-S. Jang and C.T. Sun, “Function equivalence between radial basis function networks and fuzzy inference systems,” IEEE Trans. on Neural Networks, 4(1): 156-159, Jan 1993.
57.J.—S. Roger Jang, ”ANFIS: Adaptive-Network-based Fuzzy Inference Systems,” IEEE Trans .on SMC., 23(03): 665-685, May , 1993.
58.J.—S. Roger Jang and C.T. Sun, ”Neuro-fuzzy modeling and control,” Proceedings of the IEEE, 83(3): 378-406, March, 1995.
59.J.-S. Roger Jang, C.T. Sun and E. Mizutani, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Learning, Prentice Hall, Englewood Cliffs, 1997.
60.T.A. Johansan, R. Shorten and R. Murray-Smith, “On the interpretation and identification of dynamic Takagi-Sugeno fuzzy models,” IEEE Trans. on Fuzzy Systems, 8(3): 297-313, June 2000.
61.T.F. Jung and H. Unbehauen, “Off-line identification of nonlinear systems using structurally adaptive radial basis function networks,” Proceedings of the 35th conference on decision and control, 943-948, Kobe, Japan, 1996.
62.T.F. Jung and H. Unbehauen, “On-line identification of nonlinear time-variant systems using structurally adaptive radial basis function networks,” American Control conference, Albuquerque, New Mexico, 1996.
63.V. Kadirkamanathan and M. Niranjan, “A function estimation approach to sequential learning with neural networks,” Neural Computation, 5: 954-975, 1993.
64.L.P. Kaelbling, M.L. Littman and A.W. Moore, “Reinforcement learning: a survey,” Journal of Artificial Intelligence Research. 4: 237-285 1996.
65.N. B. Karayiannis and J. C. Bezdek, “An integrated approach to fuzzy learning vector quantization and fuzzy c-means clustering,” IEEE Trans. on Fuzzy Systems, 5(4): 622-628, 1997.
66.N. B. Karayiannis and W. Mi, “Growing radial basis neural networks: Merging supervised and unsupervised learning with network growth techniques,” IEEE Trans. Neural Networks, 8(6): 1492-1506, 1997.
67.N. B. Karayiannis, “Reformulated radial basis neural networks trained by gradient descent,” IEEE Trans. Neural Networks, 10: 657-671, 1999.
68.N. B. Karayiannis, “An Axiomatic approach to reformulating radial basis neural networks,” in Nonlinear Biomedical Signal Processing, Volume 1: Fuzzy logic, Neural networks, and New algorithms, edited by Metin Akay, IEEE Press, New York, 2000.
69.E. Kim, M. park and S. Ji, “A new approach to fuzzy modeling,” IEEE Trans. Fuzzy Systems, 5(3): 328-337, 1997.
70.E. Kim, M. park and S. Kim, “A transformed input-domain approach to fuzzy modeling,” IEEE Trans. Fuzzy Systems, 6(4): 596-604, 1998.
71.B. Kosko, Neural Networks and Fuzzy Systems, Prentice-Hall, Englewood Cliffs, 1992.
72.B. Kosko, ”Fuzzy Systems are Universal Approximators,” IEEE Trans. Computers, 43: 1329-1333, 1994.
73.M. Kubat, “Decision trees can initialize radial-basis function networks,” IEEE Trans. On Neural Networks, 9(5): 813-821, 1998.
74.R.J. Kuo, O.H. Cohen and S.R.T. Kumara, “Neural network driven fuzzy inference system,” Proceeding of IEEE International Conference on Neural Networks, 807-812, 1994.
75.H.K. Kwan and Y. Cai, “Fuzzy neural network and its application to pattern recognition,” IEEE Trans. On Fuzzy Systems, 2(3): 185-193, 1994.
76.C.C. Lee, “Fuzzy logic in control systems: fuzzy logic controller, part I,” IEEE Trans. On SMC., 20(2): 404-418, 1990.
77.C.C. Lee, “Fuzzy logic in control systems: fuzzy logic controller, part II,” IEEE Trans. On SMC., 20(2): 419-435, 1990.
78.C.C. Lee, “A Self-Learning Rule-Based Controller Employing Approximate Reasoning and Neural Net Concepts,” Int. Journal of Int. Systems, 6: 71-93, 1991.
79.C.-H. Lee and C.-C. Teng, “Identification and control of dynamic systems using recurrent fuzzy neural networks,” IEEE Trans. on Fuzzy Systems, 8(4): 349-366, Aug. 2000.
80.S. Lee and R.M. Kil, “A gaussian potential function network with hierarchically self-organizing learning,” Neural Networks, 4: 207-224, 1991.
81.J.A. Leonard and M.A. Kramer, “Radial basis functions for classifying process faults,” IEEE Control Systems, Apr. 1991.
82.J.A. Leonard, M.A. Kramer and L.H Ungar, “Using radial basis functions to approximate a function and its error bounds,” IEEE Trans. On Neural Networks, 3(4): 624-627, 1992.
83.C.T. Lin and C.S. Lee, “Reinforcement structure/parameter learning for neural network-based fuzzy logic control systems,” IEEE Trans. on Fuzzy Systems, 2(1), Feb. 1994.
84.C.J. Lin, “A Fuzzy Adaptive Learning Control Network with On-Line Structure and Parameter Learning,” Neural Network, 1996.
85.C.T. Lin and C.S. Lee, Neural Fuzzy Systems: a Neuro-Fuzzy Synergism to Intelligent Systems, Prentice Hall, 1996.
86.P. Lindskog, “Fuzzy identification from a grey box modeling point of view,” in Fuzzy model identification: selected approaches, H. Hellendoorn, D. Driankov (Eds.), 3-50, Springer-Verlag Berlin Heidelberg, 1997.
87.D. Lowe, “Adaptive radial basis function nonlinearities, and the problem of generalization,” IEE International Conference on Artificial Neural Networks, 171-175, London, UK, 1989.
88.E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a fuzzy logic controller,” Int. J. Man mach. Studies, 7(1): 1-13, 1975.
89.E. H. Mamdani, “Application of fuzzy logic to approximate reasoning using linguistic systems,” Fuzzy Sets and Systems, 26, 1182-1191, 1977.
90.W.T. Miller, R.S. Sutton and P.J. Werbos. Neural control application, Cambridge, Mass. MIT Press, 1990.
91.D. Michie and R.A. Chambers, “Boxes: An experiment in adaptive control,”In J. T. Tou and R.H. Wilcox, editors, Machine Intelligence, 137-152, Oliver and Boyd, Edinburgh, 1968.
92.S. Mitra and S. K. Pal, “Fuzzy multi-layer perceptron, inferencing and rule generation, ” IEEE Trans. On Neural Networks, 6: 51-63, 1995.
93.J. Moody and C.J. Darken, “Fast learning in networks of locally-tuned processing units,” Neural Computation,1: 281-294, 1989.
94.G. C. Mouzouris and J. M. Mendel, “Designing fuzzy logic systems for uncertain environments using a Singular-Value-QR decomposition method,” Proc. Of the Fifth IEEE Int’l Conference on Fuzzy Systems, New Orleans, LA, 1996.
95.G. C. Mouzouris and J. M. Mendel, “A Singular-Value-QR decomposition based method for training fuzzy logic systems in uncertain environments,” Journal of Intelligent and Fuzzy Systems, 5: 367-374, 1997.
96.M.T. Musavi, W. Ahmed , K.H. Chan, K.B. Faris and D.M. Hummels, “On the training of radial basis function classifies,” Neural Networks, 5: 595-603, 1992.
97.H. Nakanishi, I.B. urksen and M. Sugeno, “A review and comparison of six reasoning methods,” Fuzzy sets and Systems, 57: 257-266, 1993.
98.Y. Nakoula, S. Galichet and L. Foulloy, “Identification of linguistic fuzzy models based on learning,” in Fuzzy model identification: selected approaches, H. Hellendoorn, D. Driankov (Eds.), 281-319, Springer-Verlag Berlin Heidelberg, 1997.
99.D. Nauck, F. Klawonn and R. Kruse, Foundations of Neuro-Fuzzy Systems, Wiley, New York, 1997.
100.O. Nelles, Nonlinar system identification: from classical approaches to neural networks and fuzzy models, Springer-Verlag Berlin Heidelberg, 1997.
101.J. Nie and D.A. Linkens, “Learning control using fuzzified self-organizing radial basis function network,” IEEE Trans. on Fuzzy Systems, vol.1, no.4, Nov. 1993.
102.K. Nozaki, H. Ishibuchi and H. Tanaka, “A simple but powerful heuristic method for generating fuzzy rules from numerical data,” Fuzzy Sets and Systems, 86, 251-270, 1997.
103.M.J. L. Orr, “Regularization in the selection of radial basis function centers,” Neural Computation, vol.7, pp606-623, 1995.
104.M.J. L. Orr, “Local smoothing of radial basis function networks,” International Symposium on Artificial Neural Networks, Hsinchu, Taiwan, 1995.
105.M.J. L. Orr, “An EM algorithm for regularized radial basis function networks,” International Conference on Neural Networks and Brain, Beijing, China, 1998.
106.J. Park and I.W. Sandberg, “Universal approximation using radial-basis-function networks,” Neural Computation, 3: 246-257, 1991.
107.J. Park and I.W. Sandberg, “Approximation and radial-basis-function networks,” Neural Computation, 5: 305-316, 1993.
108.M.-K. Park, S.-H. Ji, E.-T. Kim and M. Park, “Identification of Takagi-Sugeno fuzzy models via clustering and hough transform,” in Fuzzy model identification: selected approaches, H. Hellendoorn, D. Driankov (Eds.),91-120, Springer-Verlag Berlin Heidelberg, 1997.
109.W. Pedrycz, “An identification algorithm in fuzzy relational systems,” Fuzzy Sets and Systems, 13: 153-167, 1984.
110.W. Pedrycz, “Fuzzy neural networks and neurocomputations,” Fuzzy Sets and Systems, 56: 1-28, 1993.
111.W. Pedrycz and A.F. Rocha, “Fuzzy-set based models of neurons and knowledge-based networks,” IEEE Trans. On Fuzzy Systems, 1(4): 254-266, 1993.
112.W. Pedrycz, “Conditional fuzzy clustering in the design of radial basis function neural network,” IEEE Trans.Neural Networks, 9(4): 601-612, 1998.
113.D.T. Pham and E.J. Bayro-Corrochano, “Self-organizing neural-network-based pattern clustering method with fuzzy outputs,” Pattern Recognitions, 27(8): 1103-1110, 1994.
114.J. Platt, “A resource allocating network for function interpolation,” Neural Computation, 3: 213-225, 1991.
115.T. Poggio and F. Giros, “Networks for approximation and learning,” IEEE Proceeding. 78(9):1481-1497, Sept. 1990.
116.W.Z. Qiao, W.P. Zhuang and T.H. Heng, “A Rule Self-Regulating Fuzzy Controller”, Fuzzy Sets and Systems, 47:13-21, 1992.
117.A. Rueda and W. Pedrycz, “Hierarchical fuzzy-neural-PD controller for robot manipulators,” in Proceedings of IEEE International Conference on Fuzzy Systems, 1: 673-676, 1994.
118.D. E. Rumelhart, G. E. Hinton and R. J. Williams, “Learning internal representations by error propagation,” in D.E. Rumelhart and J.L. McClelland, editors, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, chapter 8, MIT Press, Cambridge, 1986.
119.S.P. Singh and R.S. Sutton, “Reinforcement learning with replacing eligibility traces,” Machine Learning, 22, 123-158, 1996.
120.M. Setnes, “Supervised fuzzy clustering for rule extraction,” IEEE Trans. on Fuzzy Systems, 8(4):416-424, Aug. 2000.
121.M.-C. Su, “Identification of singleton fuzzy models via fuzzy hyperrectangular composite NN,” in Fuzzy model identification: selected approaches, H. Hellendoorn, D. Driankov (Eds.),193-214, Springer-Verlag Berlin Heidelberg, 1997.
122.M. Sugeno and K. T. Kang, “Structure identification of fuzzy model,” Fuzzy Sets and Systems, 28, 1988.
123.M. Sugeno and T. Yasukawa, “A fuzzy-logic-based approach to qualitative modeling,” IEEE Trans. on Fuzzy Systems, 1(1), 1993.
124.C.-T. Sun, “Rule-base structure identification in an adaptive-network-based fuzzy inference system,” IEEE Trans. on Fuzzy Systems, 2: 64-73, 1994.
125.N. Sundararajan, P. Saratchandran and Lu Ying Wei, “Radial basis function neural networks with sequential learning: MRAN and its applications,” World Scientific Publishing Co. Pte. Ltd., 1999.
126.R.S. Sutton, “Temporal credit assignment in reinforcement learning,” Doctoral Dissertation, Department of Computer and Information Science, University of Massachusetts, Amherst, 1984.
127.R.S. Sutton, “Learning to predict by the method of temporal differences,” Machine Learning, 3:9-44, 1988.
128.R.S. Sutton, “On step-size and bias in temporal-difference learning,” Proceedings of the Eighth Yale Workshop on Adaptive and Learning Systems, 91-96, 1994.
129.R.S. Sutton, “Generalization in reinforcement learning: successful examples using sparse coarse coding,” Advances in Neural Information Processing Systems, 8: 1038-1044, MIT Press, 1996.
130.R.S. Sutton and A.G. Barto, “Reinforcement learning: An Introduction,” The MIT Press, 1998.
131.H. Takagi and I. Hayashi, “NN-driven fuzzy reasoning,” International Journal of Approximate Reasoning, 5(3): 191-212, 1991.
132.S. Tan, J. Hao and J. Vandewalle, “Identification of nonlinear discrete-time multivariable dynamical system by RBF neural networks,” IEEE Int. Conf. On Neural Networks, Orlando, Florida, 3250-3255, 1994.
133.S.H.G. ten Hagen and B.J.A.Krose, “Generalizing in TD(l) learning,” Proc. of Third Joint Conf. on Information Sciences, 2:319-322, 1997.
134.T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and its Application to Modeling and Control,” IEEE Trans. SMC., 15(1);116-132, 1985.
135.C.-S. Ting, T.-H. S. Li and F.-C. Kung, “An approach to systematic design of the fuzzy control system,” Fuzzy Sets and Systems, 77: 151-166. 1996.
136.L.H. Tsoukalas and R. E. Uhrig, In Fuzzy and Neural Approaches in Engineering, Chapter 12 and 13, John Wiley & Sons, Inc., 1997.
137.V. Vergara and C. Moraga, “Optimization of fuzzy models by global numeric optimization,” in Fuzzy model identification: selected approaches, H. Hellendoorn, D. Driankov (Eds.), 251-280, Springer-Verlag Berlin Heidelberg, 1997.
138.B. Wang and K.B. Cho, “Radial basis function network with short term memory for temporal sequence processing,” IEEE Conf. on Neural Networks, 2683-2688, 1995.
139.L. Wang and R. Langari, “Building Sugeno-type models using fuzzy discretization and orthogonal parameter estimation techniques,” IEEE Trans. on fuzzy systems, 3: 454-458, 1995.
140.L. Wang and R. Langari, “Complex systems modeling via fuzzy logic,” IEEE Trans. on SMC., (Part B), 26: 100-106, 1996.
141.L. Wang and R. Langari, “Identification of time-varying fuzzy system,” International Journal of General Systems, 25: 203-218, 1996.
142.L.-X. Wang, “Fuzzy systems are universal approximators,” Proc. IEEE International Conf. On Fuzzy Systems, San Diego, 1163-1170, 1992.
143.L.-X. Wang and J.M. Mendel, “Fuzzy basis functions, universal approximation and orthogonal least squares learning,” IEEE Trans. On Neural Networks, 3(5): 807-813, 1992.
144.L.-X. Wang and J.M. Mendel, “Generating fuzzy rules from numerical data, with application,” IEEE Trans. On SMC., 22(6): 1414-1427, 1992.
145.L.-X. Wang, “Adaptive Fuzzy Systems and Control: Design and Stability Analysis,” PTR Prentice-Hall, Englewood Cliffs, NJ, 1994.
146.L.-X. Wang, “A Course in Fuzzy Systems and Control,” Prentice-Hall, Inc. 1997.
147.L.-X. Wang, “Universal approximation by hierarchical fuzzy system,” Fuzzy sets and Systems, 93: 223-230, 1998.
148.A.R. Webb and S. Shannon, “Shape-adaptive radial basis functions,” IEEE Trans. on Neural Networks, 9(6), Nov. 1998.
149.P.J. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the Behavioural Science, PhD thesis, Harvard University, Boston, USA, 1974.
150.D. Wettschereck and T. Dietterich, “Improving the performance of radial basis function networks by learning center locations,” In J.E. Moody, S.J. Hanson and R.P. Lippmann, editors, Advance in Neural Information Processing Systems, vol. 4, 1133-1140, Morgan Kaufmann, San Mateo, 1992.
151.B. Widrow, N.K. Gupta and S. Maitra, “Punish/reward: learning with a critic in adaptive threshold systems,” IEEE Trans. SMC., 5:455-465, 1973.
152.R. R. Yager and D. P. Filev, Essentials of Fuzzy Modeling and Control, John Wiley & Sons, New York, 1994.
153.Y. Yam, “Fuzzy approximation via grid point sampling and singular value decomposition,” IEEE Trans. on SMC., 27: 933-951, 1997.
154.Y. Yam, P. Baranyi and C.-T. Yang, “Reduction of fuzzy rule base via Singular Value Decomposition,” IEEE Trans. on Fuzzy Systems, 7: 120-130, April, 1999.
155.J. Yen and L. Wang, “An SVD-based fuzzy model reduction strategy,” Proc. Of the Fifth IEEE Int’l Conference on Fuzzy Systems, New Orleans, LA, 835-841, 1996.
156.J. Yen and L. Wang, “Application of statistical information criteria for optimal fuzzy model construction,” IEEE Trans. on Fuzzy Systems, 6(3):362-372, Aug. 1998.
157.J. Yen, L. Wang and C.W. Gillespie, “Improving the interpretability of TSK fuzzy models by combining Global learning and local learning,” IEEE Trans. on Fuzzy Systems, 6(4): 530-537, Nov. 1998.
158.J. Yen and L. Wang, “Simplifying fuzzy rule-based models using orthogonal transformation methods,” IEEE Trans. on SMC. (Part B), 29(1), 1999.
159.J. Yen and R. Langari, Fuzzy Logic: Intelligence, Control, and Information, Prentice Hall, Englewood Cliffs, NJ, 1999.
160.H. Ying, ”General SISO Takagi-Sugeno Fuzzy Systems with Linear Rule Consequent are Universal Approximators,” IEEE Trans. On Fuzzy Systems, 6(4): 582-587, Nov. 1998.
161.H. Ying, Y.-S. Ding, S.-K. Li and S.-H. Shao, “Comparison of necessary conditions for typical Takagi-Sugeno and Mamdani fuzzy systems as universal approximators,” IEEE Trans. on SMC., 29: 508-514, 1999.
162.L. A. Zadeh, “Fuzzy sets,” Informat. Control, 8: 338-353, 1965.
163.L. A. Zadeh, “Outline of a new approach to the analysis of complex systems and decision processes,” IEEE Trans. On SMC., 3(1): 28-44, 1973.
164.L. A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning I, II, III,” Information Sciences, 8: 199-251, 301-357; 9: 43-80, 1975.
165.L. A. Zadeh, “Knowledge representation in fuzzy logic,” IEEE Trans. on Knowledge and Data Engineering, 1(1): 89-100, 1989.
166.L. A. Zadeh, “Fuzzy logic, Neural networks, and Soft computing,” Communications of the ACM, 37(3): 77-84, 1994.
167.L. A. Zadeh, “The role of fuzzy logic in modeling, identification and control,” Modeling Identification and Control, 15(3): 191-203, 1994.
168.L. A. Zadeh, “Fuzzy logic = Computing with words,” IEEE Trans. on Fuzzy Systems, 4, 1996.
169.X.-J. Zeng and M. G. Singh, “Approximation theory of fuzzy systems — MIMO case, ” IEEE Trans. on Fuzzy Systems, 3: 219-235, 1995.
170.X.-J. Zeng and M. G. Singh, “Approximation properties of fuzzy systems generated by the min inference, ” IEEE Trans. on SMC., 26: 187-193, 1996.
171.X.-J. Zeng and M. G. Singh, “Approximation accuracy analysis of fuzzy systems as function approximators, ” IEEE Trans. on Fuzzy Systems, 4: 44-63, 1996.
172.C.S. Lin and H. Kim, “CMAC-based adaptive critic self-learning control,” IEEE Trans. On Fuzzy Systems, 2(1): 46-63, 1991.
173.C.S. Lin, Y.H.E. Cheng and H. Kim, “Radial basis function networks for adaptive critic learning,” In Proceedings of IEEE International Conference on Fuzzy Systems, 612-617, San Francisco, 1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊