跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/02/29 11:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周源栩
研究生(外文):Yuan-Hsu Chou
論文名稱:失衡轉子系統之暫態響應分析與控制
論文名稱(外文):On the Transient Response and Control of Unbalanced Rotor Systems
指導教授:黃世欽黃世欽引用關係
指導教授(外文):Shyh-Chin Huang
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:73
中文關鍵詞:轉子暫態控制失衡
外文關鍵詞:rotor systemtransientcontrolunbalance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究乃分析失衡轉子系統之暫態響應,並應用控制法則藉調整中間支撐勁度,來控制系統之暫態響應。本文首先以能量法的觀點來推導具中間支撐之轉子系統的運動方程式,並探討系統之動態特性及失衡響應;再利用朗格庫塔(Rung-Kutta Method)數值積分法,求解轉子系統起機、停機時在不同的角加速度下,轉子系統之暫態響應。最後應用壓電元件結合於系統之中間彈性支撐上,使之為主動式軸承,藉由壓電元件的壓電效應,結合比例與導數回授控制法則,來調整可變彈性支撐的控制參數,達到抑制暫態響應的效果,經分析後可發現加入控制力可改變臨界轉速,並有效的抑制暫態響應。本研究對於改善或抑制不定轉速下,轉子系統的暫態響應提供一可行的設計、分析之工具。

The purpose of this research is to analyze and to control the transient response of unbalanced rotor system via adjusting the intermediate elastic supports. First, the equations of motion of a rotor system containing elastic supports are derived from the prospect of energy method. The discussion of the dynamic behavior of the system and unbalanced response follows. By use of Rung Kutta method transient response of rotor systems for various angular acceleration simulating rotor’s start-up and coast-down are solved for. This paper also utilizes the advantage of piezoelectric element to combine with elastic supports to form active supports. Applied with a proportional plus a derivative feedback control law the transient response is effectively suppressed. Through the analyses, it is found that with adding of control forces, critical speeds can be changed and transient response can be reduced effectively. This research provides a prospective approach and an analytical tool to improving transient response of rotor systems.

摘 要I
ABSTRACTII
誌 謝III
目 錄IV
圖表索引VI
第一章 緒 論1
1.1文獻回顧1
1.2研究動機4
1.3本文架構6
第二章 轉子系統之振動分析7
2.1轉子系統之能量關係式7
2.2自由振動分析11
2.3失衡轉子之穩態響應15
2.4範例說明19
第三章 轉子系統之暫態響應30
3.1 朗格庫塔數值積分法30
3.2失衡之暫態響應32
3.3範例說明34
3.4實驗流程36
第四章 轉子系統暫態響應之控制48
4.1比例與導數回授控制之原理48
4.2具壓電陶瓷支撐之轉子系統49
4.3範例說明52
第五章 結論與未來可行方向62
5.1 結論62
5.2未來可行方向64
參考文獻66
符號說明70
作者簡介73

[1]Eshleman, R. L. and Eubanks, R. A. , “On the critical speeds of a continuous shaft-disk system,” ASME Journal of Engineering for Industry, pp. 645-652(1967).
[2]Chives, D. R. and Nelson, H. D. , “The natural frequencies and critical speeds of a rotating, flexible shaft-disk system,” ASME Journal of Engineering for Industry, pp. 881-886(1975).
[3]Ozguven, H Nevzat , “On the critical speed of continuous shaft-disk systems,” ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design, 106, pp. 59-61(1984).
[4]Ruhl, R. L. and Booker, J. F., “A Finite Element Model for Distributed Parameter Turborotor Systems,” ASME Journal of Engineering for Industry, pp. 126-132(1972).
[5]Nelson, N. D. and McVaugh, J. M., “The Dynamics of Rotor-Bearing Systems Using Finite Elements,” ASME Journal of Engineering for Industry, pp. 593-600(1976).
[6]Childs, D. W. and Graviss, K., “A Note on Critical-Speed Solutions for Finite-Element-Based Rotor Models,” ASME Journal of Mechanical Design, 104, pp.412-416(1982).
[7]Lund, J. W. and Orcutt, F. K., “Calculations and Experiments on the Unbalance Response of a Flexible Rotor,” ASME Journal of Engineering for Industry, 89(4), pp. 785-796(1967).
[8]Lund, J. W., “Stability and Damped Critical Speeds of a Flexible Rotor in Fluid-Film Bearings,” ASME Journal of Engineering for Industry, 96, pp. 509-517 (1974).
[9]Chiau, S. W. and Huang, S. C., “On the Flexural Vibrations of Rotor Systems Using a Modified Transfer Matrix Method”, Proceedings of the 6th Chinese Society of Mechanical Engineers, pp. 1607-1618(1989).
[10]Shiau, T. N. and Hwang, J. L. 1989 , “A New Approach to the Dynamic Characteristic of Undamped Rotor- Bearing Systems” , ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol.111 October, pp. 379-385.
[11]Huang, S. C., Chang, C. I. and Su, C. K. , “A New Approach to Vibration Analysis of Undamped Rotor-Bearing Systems,” Journal of CSME, Vol.15, No. 5, pp.465-478(1994).
[12]Kirk, R.G., and Gunter, E. J., “Transient Response of Rotor-Bearing System ,” ASME Journal of Engineering for Industry, Vol.96, No.2, pp.682-693(1974).
[13]Subbiah, R., and Rieger, N. F., “On the Transient Analysis of Rotor-Bearing System,” Journal of Vibration, Acoustics, Stress, and Reliability in Design , Vol.110 No.4,pp.515-520 (1988).
[14]Sekhar, A. S. and Prabhu, B. S., “Transient Analysis of A Cracked Rotor Passing Through Critical Speed,” Journal of Sound and Vibration, Vol.173, No.3,pp.415-421(1994).
[15]Yamamoto, Toshio , “On critical speed of a shaft supported by a ball bearing,” ASME Journal of Applied Mechanics, pp. 199-204(1959).
[16]Lund, J. W. and Orcutt, F. K. , “Calculations and experiments on the unbalance response of a flexible rotor,” ASME Journal of Engineering for Industry, 89(4), pp. 785-796(1967).
[17]Lund, J. W. , “Stability and damped critical speeds of a flexible rotor in fluid-film bearings,” ASME Journal of Engineering for Industry, 96, pp. 509-517(1974).
[18]Lund, J. W. , “Review of the concept of dynamic coefficients for fluid film journal bearings,” ASME Journal of Tribology, 109, pp. 37-41(1987).
[19]Gasch, R. , “Vibration of large turbo-rotors in fluid-film bearings on an elastic foundation,” Journal of Sound and Vibration, 47(1), pp. 53-73(1976).
[20]Glasgow, D. A. and Nelson, H. D. , “Stability analysis of rotor-bearing systems using component mode synthesis,” ASME Journal of Mechanical Design, 102, pp. 352-359(1980).
[21]Adams, M. L. and Padovan, J. , “Insight into linearized rotor dynamics,” Journal of Sound and Vibration, 76(1) , pp. 129-142 (1981).
[22]Mecalfe, A. V. and Burdess, J. S. , “Active Vibration Control of a Multimode Rotor-Bearing system Using an Adaptive Algorithm,” Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol.108 pp. 230-231(1986).
[23]Baz, A. and Poh, S., “Performance of an Active Control System with Piezoelectric Actuators” Journal of Sound and Vibration, Vol.126 No.8,pp.327-343(1988)
[24]Fanson, J. L. and T. K. Caughey, “Positive Position Feedback Control for Large Space Structures” AIAA p. 717-724 (1990).
[25]Sanjiv, G. T., Walcott, B. L. and Rouch, K. E. , “Active Optimal Vibration control using Dynamic Absorber,” Proceedings of the 1991 IEEE Internaional Conference on Robotics and Automation, Sacramento, Califomis, pp. 1182-1187(1991).
[26]Palazzolo, A. B., Lin R. R., Kas, A. K., Montague, J. and Alexandar, R. M. , ”Test and Theory for Piezoelectric Actuator-Active Vibration Control of Rotating Machinery, ” (1991).
[27]Baz, A., S. Poh and J. Fedor, ”Independent Modal Space Control With Positive Position Feedback” , Journal of Dynamic Systems, Measurement, and Control, March, Vol. 114 p. 96-103(1992).
[28]Dosch, Jeffrey J., Inman, D. J. and Garcia, E. , “A Self-Sensing Piezoelectric Actuator for Collocated Control,” Journal of Intelligent Material System and Structure, Vol. 3, pp.166-185(1992).
[29]邱明健, “壓電陶瓷支撐調整轉子臨界轉速之分析,” 國立台灣科技大學機械工程研究所碩士論文(1996).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top