跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/07 19:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:雲麒錐
研究生(外文):Chi Chui Yun
論文名稱:電腦CPU散熱裝置的開發
論文名稱(外文):Development of Coolers for the Central Processing Units
指導教授:黃榮芳黃榮芳引用關係
指導教授(外文):Rong Fung Huang
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:110
中文關鍵詞:散熱座散熱裝置中央處理單元熱傳
外文關鍵詞:Heat SinkCoolerCentral Processing UnitHeat transfer
相關次數:
  • 被引用被引用:5
  • 點閱點閱:509
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
隨著半導體產業的蓬勃發展,各種不同電子構裝產品均朝向高密度、高能量、小體積發展,再加上傳輸速度增快及使用功率的提高,散熱問題便愈顯重要。因此,散熱裝置的開發與設計實為目前最急迫的工作。在二十世紀末,隨著筆記型電腦的發展,CPU晶片的發熱量約為10∼25W。二十一世紀初,推出1.4GHz CPU,發熱量高達35W,加上電腦機殼的輕巧化,散熱問題便顯得更加棘手。本研究以強制對流之傳統散熱手法,針對筆記型電腦1.4GHz CPU散熱之扁平式散熱裝置,以及廣泛應用於筆記型電腦、桌上型電腦以及工業電腦CPU散熱之千層式散熱裝置,進行研究分析與開發設計。經由實驗量測與軟體模擬得知,在矮薄空間內水平鰭片比垂直鰭片效率高,且開發後之扁平式水平鰭片散熱裝置已具備了35W的散熱能力,特別適用於矮薄空間內。千層式散熱裝置散熱性能的提昇,可藉由熱傳路徑的設計而獲得有效的改善。因此,對於傳統散熱裝置的開發,除了流體力學的認知外,更需考慮熱傳的行為與散熱途徑,才能有效且明顯的增加熱傳效率。
Various electron facilities produced by the semiconductor industries are developed toward high density, high energy, and small dimension. With the increase of the operation speed and power density, heat dissipation problems are getting important. Design of the coolers for these high power devices become urgent for next generation products. At the end of the 20th century, with the development of notebook computer, the heat source from the chip of the Central Processing Unit is about 10~25 Watts. Early in the 21st century, the 1.4GHz CPU dissipating about 35 W is produced. It is a challenge to solve the heat dissipation problems. This study applies the traditional cooling method by forced convection, focusing on the optimization and modification of the cooling devices: flat heat sink and multi-layer heat sink. The flat heat sink cooler is used to solve the 1.4GHz CPU of the notebook computer, while the multi-layer heat sink cooler is widely applied to every type of computers. Experiments measuring the flow rate and temperature of a commercial product are conducted to assist verification of the results of simulation by using the I-DEAS ESC software package. Optimization and modification of the cooler are then undertaken to obtain an acceptable design. The results show that the horizontal-fin design is more effective than vertical-fin one for the flat cooling devices. The performance is largely improved by redesigning the heat dissipation runner of the multi-layer coolers.
中文摘要…………………………………………………………i
英文摘要…………………………………………………………ii
誌謝………………………………………………………………iii
目錄………………………………………………………………iv
符號索引…………………………………………………………vi
表圖索引…………………………………………………………ix
第一章 緒論………………………………………………………1
1.1 研究動機……………………………………………1
1.2 文獻回顧……………..………………………………2
第二章 研究工具與方法……...………………………………9
2.1 研究方法…………….…………………………………9
2.2 溫度量測實驗…………………………………………10
2.2.1 推力提供與量測系統………………………………10
2.2.2 發熱體………………………………………………10
2.2.3 溫度量測系統………………………………………12
2.2.4 散熱裝置……………………………………………12
2.2.5 熱阻的計算…………………………………………13
2.3 風量量測實驗……………………………………15
2.3.1 熱線風速儀………………………………………15
2.3.2 風量、平均流速與雷諾數的計算………………16
2.4 I-DEAS軟體模擬簡介………………………………18
2.4.1 I-DEAS ESC簡介………………………………18
2.4.2 模型建構程序……………………………………19
2.4.3 有限容積法………………………………………20
2.4.4 熱模型理論………………………………………21
2.4.5 流體流動模型理論………………………………23
第三章 扁平式散熱裝置數值模擬結果與分析……………… 27
3.1 問題闡述與參數定義……………………………27
3.2 先期實驗…………………………………………28
3.3 預估參數…………………………………………29
3.4 原散熱裝置之軟體模擬與分析…………………30
3.5 風扇置中設計之軟體模擬與分析………………34
3.6 水平鰭片散熱裝置之軟體模擬與分析…………35
第四章 千層式散熱裝置數值模擬結果與分析………………38
4.1 問題闡述…………………………………………38
4.2 先期實驗………………………………………………38
4.3 預估參數...………………………………………………39
4.4 軟體模擬與分析…...……………………………………40
4.5 新設計千層散熱裝置….…………………………42
第五章 結論………………………………………………………44
參考文獻…………………………………………………………46
作者簡歷…………………………………………………………110
[1]Tuckerman, D. B. and Pease, R. F. W., “High-Performance Heat Sinking for VLSI,” IEEE Electron Device Letters, Vol. EDL-2, No. 5, May 1981, pp. 126-129.
[2]Chou, F.-C., Lukes, J. R., and Tien, C.-L., “Heat Transfer Enhancement by Fins in the Microscale Regime,” Journal of Heat Transfer, Vol. 121, No. 4, November 1999, pp. 972-977.
[3]Incropera, F. P., “Convection Heat Transfer in Electronic Equipment Cooling,” Journal of Heat Transfer, Vol. 110, November 1988, No. 3, pp.1097-1111.
[4]Poulikakos, D., CONDUCTION HEAT TRANSFER, Prentice-Hall. Inc, New Jersey, 1994.
[5]Kim, S. J. and Lee, S. W., AIR COOLING TECHNOLOGY for ELECTRONIC EQUIPMENT, CRC Press, Inc., Boca Raton, 1996.
[6]Remsburg, R., Advanced Thermal Design of Electronic Equipment, International Thomson Publishing, New York, 2000.
[7]Holman, J. P., Heat Transfer, McGraw-Hill, Inc., New York, 1995.
[8]Ledezma, G. A. and Bejan, A., “Optimal Geometric Arrangement of Staggered Vertical Plates in Natural Convection,” Journal of Heat Transfer, Vol. 119, No. 4, November 1997, pp. 700-707.
[9]Fisher, T. S. and Torrance, K. E., “Free Convection Limits for Pin-Fin Cooling,” Journal of Heat Transfer, Vol. 120, No. 3, August 1998, pp. 633-640.
[10]Adams, V. H., Joshi, Y., and Blackburn, D. L., “Three-Dimensional Study of Combined Conduction, Radiation, and Natural Convection From Discrete Heat Sources in a Horizontal Narrow-Aspect-Ratio Enclosure,” Journal of Heat Transfer, Vol. 121, No. 4, November 1999, pp. 992-1001.
[11]Kitamura, K. and Asakawa, T., “Fluid Flow and Heat Transfer of Natural Convection over Upward-Facing, Horizontal, Heated Plate Shrouded by a Parallel Insulated Plate,” Heat Transfer-Asian Research , Vol. 29, No. 4, 2000, pp. 333-346.
[12]Thrasher, W. W., Fisher, T. S., and Torrance, K. E., “Experiments on Chimney-Enhanced Free Convection From Pin-Fin Heat Sink,” Journal of Electronic Packaging, Vol. 122, December 2000, pp. 350-355.
[13]Kakac, S., Yuncu, H., and Hijikata, K., Cooling of Electronic Systems, Series E: Applied Sciences, Kluwer Academic Publishers, Boston, Vol. 258, 1994, pp. 71-92.
[14]Knight, R. W., Goodling, J. S., and Hall, D. J., “Optimal thermal design of forced convection heat sinks-Analytical,” Journal of Electronic Packaging, Vol. 113, No. 3, September 1991, pp. 313-321.
[15]Knight, R. W., Goodling, J. S., and Gross, B. E., “Optimal Thermal Design of Air Cooling Forced Convection Finned Heat Sinks-Experimental Verification,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 15, No. 5, October 1992, pp. 754-760.
[16]Bejan, A. and Sciubba, E., “The optimal spacing of parallel plates cooled by forced convection,” International Journal of Heat and Mass Transfer, Vol. 35, No. 12, 1992, pp. 3259-3264.
[17]Bejan, A. and Morega, A. M., “Optimal Arrays of Pin Fins and Plate Fins in Laminar Forced Convection,” Journal of Heat Transfer, Vol. 115, No. 1, February 1993, pp. 75-81.
[18]Jubran, B. A., Hamdan, M. A., and Abdualh, R. M., “Enhanced Heat Transfer, Missing Pin, and Optimization for Cylindrical Pin Fin Arrays,” Journal of Heat Transfer, Vol. 115, No. 3, August 1993, pp. 576-583.
[19]Ledezma, G., Morega, A. M., and Bejan, A., “Optimal Spacing Between Pin Fins With Impinging Flow,” Journal of Heat Transfer, Vol. 118, No. 3, August 1996, pp. 570-577.
[20]Kwon, O. and Ames, F. E., “A Velocity and Length Scale Approach to k—εModeling,” Journal of Heat Transfer, Vol. 118, No. 4, November 1996, pp. 857-863.
[21]Tasaka, M., Aihara, T., and Hayashi, C., “Heat Transfer and Pressure Lose Characteristics of Very Compact Heat Sinks,” Heat Transfer - Asian Research, Vol.28, No. 8, 1999, pp. 687-705.
[22]El-Sheikh, H. A. and Garimella, S. V., “Enhancement of Air Jet Impingement Heat Transfer Using Pin-Fin Heat Sinks,” IEEE Transactions on Components and Packaging Technologies, Vol. 23, No. 2, June 2000, pp. 300-308.
[23]Kodo, Y., Marsushima, H., and Komatsu, T., “Optimization of Pin-Fin Heat Sink for Impingement Cooling of Electronic Packages,” Journal of Electronic Packaging, Vol. 122, September 2000, pp. 240-246.
[24]Jonsson, H. and Plam, B., “Thermal and Hydraulic Behavior of Plate Fin and Strip Fin Heat Sinks Under Varying Bypass Conditions,” IEEE Transactions on Components and Packaging Technologies, Vol. 23, No. 1, March 2000, pp. 47-54.
[25]Peterson, G. P., “Overview of micro heat pipe research and development,” Appl. Mech. Rev., Vol. 45, No. 5, May 1992, pp. 175-189.
[26]Peterson, G. P., “Modeling, fabrication, and testing of micro heat pipes: An update,” Appl, Mech. Rev., Vol. 49, No, 10, part2, October 1996, pp. S175-S183.
[27]Ha, J. M. and Peterson, G. P., “The Interline Heat Transfer of Evaporating Thin Films Along a Micro Grooved Surface,” Journal of Heat Transfer, Vol. 118, No. 3, August 1996, pp. 747-754.
[28]Ha, J. M. and Peterson, G. P., “Capillary Performance of Evaporating Flow in Micro Grooves: An Analytical Approach for Very Small Tilt Angles,” Journal of Heat Transfer, Vol. 120, No. 2, May 1998, pp. 452-457.
[29]Thomas, S. K., Klasing, K. S., and Yerkes, K. L., “The Effects of Transverse Acceleration-Induced Body Forces on the Capillary Limit of Helically Grooved Heat Pipes,” Journal of Heat Transfer, Vol. 120, No. 2, May 1998, pp. 441-451.
[30]Namba, K., Kawabata, K., Niekawa, J., and Kimura, Y., “High Performance Heat-Pipe Heat Sinks for Notebook PCS,” Advances in Electronic Packaging, EEP-Vol. 26-2, 1999, pp. 2121-2128.
[31]Take, K., Furukawa, Y., and Ushioda, S., “Fundamental Investigation of Roll Bond Heat Pipes as Heat Spreader Plate for Notebook Computers,” IEEE Transactions on Components and Packaging Technologies, Vol. 23, No. 1, March 2000, pp. 80-85.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top