跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 18:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周嘉峰
研究生(外文):chou chia-fong
論文名稱:雷射低溫退火製備鈦鋯酸鉛薄膜之研究
論文名稱(外文):Low Temperature Preparation of Lead Zirconate Titanate Thin Films by Laser Annealing
指導教授:周振嘉
指導教授(外文):chou chen-chia
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:117
中文關鍵詞:二氧化碳雷射氟化氪準分子脈衝雷射低溫製程鈦鋯酸鉛金屬有機裂解法鐵電材料雷射退火
外文關鍵詞:cw-CO2 laserKrF excimer pulsed laserlow temperature processPZTMODferroelectric materiallaser annealing
相關次數:
  • 被引用被引用:21
  • 點閱點閱:379
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主要是利用金屬有機裂解法(Metal-Organic Decomposition, MOD)以旋鍍方式將多添加10 mol% PbO的Pb(Zr0.52Ti0.48)O3 (PZT)前置溶液鍍在Pt/Ti/SiO2/Si基板上,藉由近似爐管(conventional furnace)退火、連續式二氧化碳雷射(cw-CO2)退火及氟化氪準分子脈衝雷射(KrF excimer pulsed laser)退火三種不同的退火方式,將原本非晶相結構的薄膜成功轉變成具鈣鈦礦結構的薄膜。同時量測P-E曲線、介電常數性質,並藉由XRD、SEM、TEM等儀器觀察因不同退火製程對於薄膜在電性、結構及微觀上的差異性。
實驗結果顯示在電性方面,薄膜利用cw-CO2雷射進行退火,在能量為400 W(能量密度為127.3 W/cm2)持續15 s的條件下,測試電場為 450 kV/cm時,可以量測Pr值為12.4 μC/cm2約與近似爐管退火溫度 700℃持續5分鐘的12.9 μC/cm2相近,但Ec值為44.5 kV/cm卻小於爐管退火的103.3 kV/cm,將能量提高至450 W(能量密度為143.2 W/cm2)時,Pr值可高達25.2 μC/cm2,Ec值為50.0 kV/cm,比爐管退火優異許多。若利用KrF脈衝雷射進行退火,隨著能量增加,Pr值也隨之增加,能量為450 mJ(能量密度為1.3 GW/cm2)時,有最高之Pr值,但只有3.1 μC/cm2。
在結構方面,由XRD圖中可以觀察到利用爐管退火,其(100)晶面的相對強度遠高於其他晶面,且因昇溫速率較慢、持續時間過長使得薄膜直接由非晶相轉變成鈣鈦礦結構;若利用cw-CO2雷射退火試片,其(100)晶面的相對強度隨著功率及照射的時間增加而增加,且薄膜從原本的非晶相,先轉成焦綠石相,再形成鈣鈦礦結構。以SIMS觀察,薄膜經爐管退火後,表面鉛元素揮發嚴重,且內部元素相互擴散,若以cw-CO2退火,則此現象可加以改善。
在微觀方面,薄膜經爐管退火處理,在某些區域,因退火時間過短,晶粒成長較為細小,其繞射圖形為環狀圖形;而經KrF脈衝雷射退火之薄膜,有雙層不同結晶效應,上層之薄膜因吸收雷射光能促使晶粒成核成長,且因能量大使得晶粒較為粗大,由繞射圖形觀察其為點狀圖形,下層因為上層熱擴散而使薄膜結晶,但能量不足使得晶粒成長情況不佳,由繞射圖形觀察其為環狀圖形;而利用cw-CO2雷射退火之試片,發現薄膜之繞射圖形為點狀圖形,且沒有雙層結晶效應。
cw-CO2雷射可以在極短的時間內讓薄膜成核成長,對於擴散的抑制有極大的幫助,且在晶粒大小、粗糙度、電性方面皆比爐管退火好,可以提供另一種取代爐管退火的製程。對於KrF脈衝雷射而言,其因是能量皆被薄膜表面給吸收,對於厚膜退火而言並不是一項好的製程,其功能可能主要是幫助薄膜表面改質或對極薄的薄膜進行退火。
In this thesis, Pb(Zr0.52Ti0.48)O3 (PZT) precursors prepared by Metal-Organic Decomposition (MOD) were coated on the Pt (1500Å)/Ti (700 Å)/SiO2 (1500 Å)/Si (100 p-type) substrates. Additional PbO precursor (10 mol%) was added to the solution to compensate for the PbO losses occurring during the subsequent heat treatments of the PZT thin films. The structure of PZT thin films was transformed from the amorphous phase to the perovskite structure through treatments of furnace annealing (FA), cw-CO2 laser annealing (CLA) and KrF excimer pulsed laser annealing (ELA), respectively. Ferroelectric properties including P-E curve and dielectric constant were measured by commercial instruments. Macro- and micro-structures were investigated using x-ray diffractometry and electron microscopy.
The experimental results reveal that all films show the perovskite and polycrystalline structures using the above-mentioned three annealing methods. Ferroelectric properties show the remanent polarization (Pr) is 12.4 μC/cm2 using CLA with the power of 400 W (power density is 127.3 W/cm2) for 15 seconds. The value is closed to the process using the FA method with 700℃ for 5 minutes and 30 minutes. But the value of coercive electric field (Ec) using the CLA method which is smaller than that using the FA method is 44.5 kV/cm, If the power is raised to 450 W (power density is 143.2 W/cm2), Pr reaches 25.2 μC/cm2 and Ec is 50.0 kV/cm. If PZT thin films are annealed by the ELA method, the highest value of Pr is 3.1 μC/cm2 smaller than values using the FA and CLA methods.
Structural investigations show the relative intensity of the (100) plane higher than another planes ((110) and (111)) for specimens processed by the FA and CLA methods. Because of slow heating rate and long treating time, PZT thin films using a FA method transform from the amorphous to the perovskite phase directly. Contrast to PZT thin films using a CLA method transform from the amorphous phase to the pyrochlore structure before evolving to a perovskite phase. Secondary Ion Mass Spectroscopic (SIMS) investigations show that elements of PZT thin films evaporate and diffuse seriously in specimens using a FA method, and the phenomena can be improved greatly by a CLA method.
Microstructural results show that grains grow slowly in some regions using a FA method possessing low power density for annealing time 5 minutes. The grains whose the diffraction patterns exhibit ring patterns. If PZT thin films are annealed by ELA method, two layers of films crystallized differently are observed. As the upper film absorbs greater part photon energy, the large grains which revealed the spot reflections in diffraction patterns are observed. Because crystallization of the lower layer of the PZT film relies on the heat conduction from the upper layer, the value of the energy conducted is so poor that the grains are smaller, and therefore the ring diffraction patterns are exhibited. In contrast to the FA method, the CLA method provides suitable power density that is higher than FA method to anneal the films at an extremely short period of time and makes grains grow uniformly that diffraction patterns exhibit spot patterns. Comparing to the ELA method, the CLA method (λ=10.6 μm) posses longer wavelength than that (λ=248 nm) and can anneal complete PZT films (the thickness is approximately 0.2 μm), so that the method does not cause two layers of films crystallized differently.
In summary, the CLA method can make grains nucleate and grow within an extremely short period of time, and constrain effectively diffusion between films and the substrate. The grain size and ferroelectric properties using the CLA method are better than those using the FA method, and therefore the CLA appears to be an appropriate method to improve disadvantages of the FA. Whereas the KrF pulsed laser possessing short wavelength is suitable to improve the surface of thin films or anneal the extremely thin films.
第一章 前言................................................(1-1)
第二章 文獻回顧............................................(2-1)
2.1 鐵電材料之簡介....................................(2-1)
2.1.1 鐵電材料晶體結構定義........................(2-1)
2.1.2 鈣鈦礦結構..................................(2-2)
2.1.3 鐵電材料之特性..............................(2-4)
2.2 鈦鋯酸鉛鐵電材料之簡介............................(2-6)
2.2.1 鈦鋯酸鉛材料結構............................(2-6)
2.3 鐵電薄膜之製備....................................(2-9)
2.4 金屬有機裂解法之簡介.............................(2-10)
2.4.1 金屬有機裂解法之基本原理...................(2-10)
2.4.2 利用金屬有機裂解法合成鈦鋯酸鉛起始溶液.....(2-11)
2.4.3 金屬有機裂解法之鈦鋯酸鉛薄膜製備...........(2-13)
2.5 鐵電薄膜的應用與要求.............................(2-16)
2.6 雷射退火.........................................(2-18)
2.6.1 雷射退火簡介...............................(2-18)
2.6.2 雷射照射的吸收機...........................(2-23)
2.6.3 雷射退火處理的光源.........................(2-24)
2.6.3.1 脈衝雷射退火...........................(2-24)
2.6.3.2 連續波長雷射退火.......................(2-24)
2.6.4 熱傳導.....................................(2-25)
2.6.5 雷射退火晶粒成長機制.......................(2-26)
2.6.6 雷射製程參數對薄膜的影響...................(2-27)
第三章 實驗方法及步驟......................................(3-1)
3.1 實驗藥品規格及儀器總表............................(3-1)
3.2 鍍膜基板之製作....................................(3-3)
3.3 PZT前置溶液的製作.................................(3-3)
3.3.1 Lead 2-ethylhexanoate(Pb(C7H15COO)2)........(3-3)
3.3.2 Zirconium 2-ethylhexanoate(Zr((C7H15COO)4)..(3-4)
3.3.3 Titanium di-ethoxy-di-neodecanoate (Ti(OC2H5)2
(C9H19COO)2)................................(3-4)
3.3.4 Pb(Zr0.52Ti0.48)O3前置溶液之調配............(3-4)
3.4 薄膜的製備........................................(3-9)
3.4.1 基板的清潔..................................(3-9)
3.4.2 薄膜披覆...................................(3-10)
3.4.3 近似快速退火、二氧化碳雷射退火及KrF脈衝雷射退火
...........................................(3-10)
3.5 特性量測.........................................(3-11)
3.5.1 熱重分析儀.................................(3-11)
3.5.2 X-Ray 繞射分析儀...........................(3-11)
3.5.3 n & k薄膜測厚儀............................(3-11)
3.5.4 掃描式電子顯微鏡...........................(3-11)
3.5.5 穿透式電子顯微鏡...........................(3-12)
3.5.6 二次離子質譜儀.............................(3-12)
3.6 薄膜鐵電性質量測.................................(3-12)
3.6.1 上電極製作.................................(3-12)
3.6.2 極化-電場量測..............................(3-15)
3.6.3 介電常數量測...............................(3-15)
第四章 結果與討論..........................................(4-1)
4.1 金屬有機裂解法製備鈦鋯酸鉛之熱重分析..............(4-1)
4.2 金屬有機裂解法製備鈦鋯酸鉛粉末之X-Ray分析.........(4-3)
4.3 鈦鋯酸鉛薄膜之光性分析............................(4-5)
4.4 爐管退火製備鈦鋯酸鉛薄膜..........................(4-7)
4.4.1 X-Ray分析...................................(4-7)
4.4.2 電滯曲線...................................(4-12)
4.4.3 SEM分析....................................(4-14)
4.4.4 SIMS分析...................................(4-18)
4.4.5 TEM分析....................................(4-20)
4.5 氟化氪(KrF)脈衝雷射退火製備鈦鋯酸鉛薄膜..........(4-22)
4.5.1 X-Ray分析..................................(4-22)
4.5.2 電滯曲線...................................(4-24)
4.5.3 SEM分析....................................(4-25)
4.5.4 TEM分析....................................(4-26)
4.6 二氧化碳(CO2)雷射退火製備鈦鋯酸鉛薄膜............(4-29)
4.6.1 X-Ray分析..................................(4-29)
4.6.2 電滯曲線...................................(4-34)
4.6.3 SEM分析....................................(4-36)
4.6.4 SIMS分析...................................(4-40)
4.6.5 TEM分析....................................(4-42)
第五章 結論................................................(5-1)
參考文獻...................................................(6-1)
1.鍾朝如、甘炯耀,”淺談高積極度鐵電記憶體的發展與關鍵製程”,材料會訊,第4卷,第3期,第27~36頁,民國86年9月。
2.R. E. Jones, Jr. and S. B. Desu, “Process Integration for Nonvolatile Ferroelectric Memory Fabrication”, MRS BULLETIN, pp.55~58 (1996).
3.鄭晃忠、莊朝凱、黃全洲、鄧德宏、史德智、陳永宏、賴明駿,”高密度鐵電性記憶體之趨勢發展”,電子月刊,第五卷,第五期,第136~146頁,民國88年五月。
4.D. L. Polla and L. F. Francis, “Ferroelectric Thin Films in Micro-electromechanical Systems Applications”, MRS BULLETIN, pp.59~65 (1996).
5.R. W. Vest, “Metallo-Organic Decomposition (MOD) Processing of Ferroelectric and Electro-Optic Films: A review”, Ferroelectric, Vol. 102, pp.53~68 (1990).
6.吳泰伯,”強介電薄膜之物理氣相鍍膜技術”,工業材料,第109期,第135~141頁,民國85年1月。
7.陳三元,”強介電薄膜之液相法製作”,工業材料,第108期,第100~111頁,民國84年12月。
8.H. Suzuki, M. B. Othman, K. Murakami, S. Kanelo and T. Hayashi, “Low-Temperature Processing of Ferroelectric Pb(Zr0.53Ti0.47)O3 Thin Film from Molecular-Designed Alkoxide Precursor Solution”, Jpn. J. Appl. Phys., Vol. 35, part 1, No. 9B, pp.4896~4899 (1996).
9.C. K. Kwok and S. B. Desu, “Low Temperature Formation of Ferroelectric Thin Films”, Mat. Res. Soc. Symp. Proc., Vol. 271, pp.371~376 (1992).
10.C. V. R. Vasant kumar, M. Sayer, R. Pascual, D. T. Amm, Z. Wu, “Lead Zirconate Titanate Films by Rapid Thermal Processing”, Appl. Phys. Lett., 58(11), pp.1161~1163 (1991).
11.E. M. Griswold and L. Weaver, “Phase Transformations in Rapid Thermal Processed Lead Zirconate Titanate”, J. Mater. Res., Vol.10, No.12, pp.3149~3159 (1995).
12.S. H. Kim, C. E. Kim, Y. J. Oh, ”Influence of Al2O3 diffusion barrier and PbTiO3 seed layer on Microstructural and ferroelectric characteristics of PZT thin films by sol-gel spin coating method”, Thin Solid Films, 305, pp.321~326 (1997).
13.M. Y. Kwak, D. H. Shin, T. W. Kang, K. N. Kim, “Characteristics of TiN barrier layer against Cu diffusion”, Thin Solid Films, 339, pp.290~293 (1999).
14.L. L. Hench, J. K. West, “Principles of Electronic Ceramic”, John Wiley and Sons, New York, p.238 (1990).
15.Yuhuan Xu, “Ferroelectric Materials and Their Applications”, North-Holland, New York, p.7 (1991).
16.Marta Deri, “Ferroelectric Ceramics”, Maclaren and Sons LTD, London, p.9 (1991).
17.Yuhuan Xu, “Ferroelectric Materials and Their Applications”, North-Holland, New York, p.102 (1991).
18.R. D. Shannon, “Effective Ionic Radii in Oxides and Fluorides”, Acta Cryst., B25, p.925(1969).
19.吳朗,”電子陶瓷介電”,第149頁,台北,全欣科技圖書,民國83年。
20.Yuhuan Xu, “Ferroelectric Materials and Their Applications”, North-Holland, New York, p.10 (1991).
21.陳正劭,”鈦酸鉛與鈦酸鉛鈣之製備極其電域結構之研究”,台灣科技大學論文,第14頁,民國85年6月。
22.林諭男,”鐵電薄膜電容特性與機制”,材料會訊,第4卷,第3期,第50~54頁,民國85年9月。
23.T. Mitsw and S. Nomura, “Ferroelectrics and related substances, Springer-Verlag, New York, p.426 (1981).
24.Yuhuan Xu, “Ferroelectric Materials and Their Applications”, North-Holland, New York, p.110 (1991).
25.G. M. Vest and S. Singaram, “Synthesis of Metallo-Organic Compounds for MOD Powders and Films”, Mat. Res. Soc. Symp. Proc., Vol.60, pp.35~42 (1986).
26.R. A. Lipeles, D. J. Coleman, and M. S. Leung, “Metaloorganic Solution Deposition of Ferroelectric PZT Films”, IEEE Transactions on ultrasocics, ferroelectrics and frequency control, Vol.38, No.6, pp.684~689 (1991).
27.B. A. Tuttle and R. W. Schwartz, “Solution Deposition of Ferroelectric Thin Films”, MRS BULLETIN, pp.49~54 (1996).
28.黃雅儀,”添加微粉於有機金屬鹽溶液中製備PZT鐵電厚膜之研究”,清華大學碩士論文,民國88年6月。
29.J. Kingon, S. K. Streiffer, C. Basceri, and S. R. Summerfelt, “High-Permittivity Perovskite Thin Films for Dynamic Random-Access Memories”, MRS BULLETIN, pp.46~52 (1996).
30.J. Carrano, C. Sudhama, M. Chikarmane, W. Shepherd, and N. Abt, “Electrical and Reliability Properties of PZT Thin Films for ULSI DRAM Applications”, IEEE Transactions on ultrasocics, ferroelectrics and frequency control, Vol.38, No.6, pp.690~702 (1991).
31.A. Mansingh, “Fabrication and Applications of Piezo- and Ferroelectric Films”, Ferroelectrics, Vol.102, pp.69~84 (1990).
32.C. K. Kwok and S. B. Desu, “Low temperature perovskite formation of lead Zirconate titanate thin films by a seeding process”, J. Mater. Res., Vol.8, No.2, pp.339~344 (1993).
33.Y. Fujimory, T. Nakamura and H. Takasu, “Low-Temperature Crystallization of Sol-Gel-Derived Pb(Zr, Ti)O3 Thin Films”, Jpn. J. Appl. Phys., Vol.38, pp.5346~5349 (1999).
34.X. J. Meng, J. G. Cheng, B. Li, S. L. Guo, H. J. Ye, and J. H. Chu, “Low-temperature preparation of highly (111) oriented PZT thin films by a modified sol-gel technique”, Journal of Crystal Growth, 208, pp.541~545 (2000).
35.E. I. Shtyrkov, I. B. Kkhaibullin, M. M. Zaripov, M. F. Galyatudinov, and R. M. Bayazitv, “Local laser annealing of implantaion doped semiconductor layers“, Sov. Phys. Semicond., Vol.9, No.10 pp.1309~1310 (1976).
36.B. Khabullin, E. I. Shtyrkov, M. M. Zaripov, M. F. Galyautdinov, and G. G. Zakirov, Sov. Phys. Semicond., Vol.11, No.2 pp.190~192 (1977).
37.施敏、張俊彥,”半導體元件物理與製作技術”,第505頁,高立書局,台北,民國86年5月。
38.R. T. Young, C. W. White, G. J. Clark, J. Narayan, W. H. Christie, M. Murakami, P. W. King, and S. D. Kramer, “Laser annealing of boron-implanted silicon”, Appl. Phys. Lett., 32(3), pp.139~141 (1978).
39.H. Qatanabe, H. Miki, S. Sugau, K. K. and T. Kioda, “Crystallization Process of Polycrystalline Silicon by KrF Excimer Laser Annealing”, Jpn. J. Appl. Phys., Vol.33, No.8, part 1, pp.4491~4498 (1994).
40.A. Gat, J. F. Gibbons, T. J. Magee, J. Peng, V. R. Deline and P. Williams, “Physical and electrical properties of laser-annealed ion-implanted silicon”, Appl. Phys. Lett., 32(5), pp.276~278 (1978).
41.P. Baeri, E. Rimini, “Laser annealing of silicon”, Materials Chemistry and Physics, 46, pp.169~177 (1996).
42.R. Carluccio, S. Cina, G. Fortunato, S. Friligkos, J. Stoemenos, “Structure of poly-Si films obtained by laser annealing”, Thin Solid Films, 298, pp.57~60 (1997).
43.C. T. Angelis and C. A. Dimitriadis, “Effect of excimer laser annealing on the structural and electrical properties of polycrystalline silicon thin-film transistors”, J. Appl. Phys., Vol.86, No.8, pp.4600~4606 (1999).
44.D. Bersani, P. P. Lottici, A. Montenero, S. Pigoni, “Phase transformations in sol-gel prepared PbTiO3”, Journal of Materials Science, 31, pp.3153~3157 (1996).
45.Y. Matsui, M. Okuyama, N. Fujita, and Y. Hamakawa, “Laser annealing to produce ferroelectric-phase PbTiO3 thin films”, J. Appl. Phys. 52(8), pp.5107~5111 (1981).
46.A. Ito, A. Machida and M. Obara, “Epitaxial Growth of BaTiO3 Optical Thin Films by Pulsed KrF Laser Deposition and in situ Pulsed Laser Annealing”, Jpn. J. Appl. Phys. Vol.36, No.6B, part 2, pp.L805~L807 (1997).
47.Y. Zhu, J. Zhu, Y. J. Song, and S. B. Desu, “Laser-assisted low temperature processing of Pb(Zr, Ti)O3 thin film”, Applied Physics Letters, Vol.73, No.14, pp.1958~1960 (1998).
48.X. M. Lu, J. S. Zhu, X. F. Huang, C. Y. Lin, and Y. N. Wang, “Laser-induced phaser transformation from amorphous to perovskite in PbZr0.44Ti0.56O3 films with the substrate at room temperature”, Appl. Phys. Lett., 65(16), pp.2015~2017 (1994).
49.M. V. Allmen, “Laser-Beam Interactions with Materials”, Springer-Verlag, New York, p.6 (1987).
50.M. Bertolotti, “Physical Processes in Laser-Materials Interactions”, Plenum Press, New York, p.190 (1983).
51.P. Baeri, E. Rimini, “Laser annealing of silicon”, Materials Chemistry and Physics, 46, pp.169~177 (1996).
52.G. K. Bhaumik, A. K. Nath, S. Basu, “Laser annealing of zinc oxide thin film deposited by spray-CVD”, Materials Science and Engineering, B52, pp.25~31 (1998).
53.H. Watanabe, H. Miki, S. Sugai, K. Kawasaki, and T. Kioka, “Crystallization Process of Polycystalline Silicon by KrF Excimer Laser Annealing”, Jpn. J. Appl. Phys., Vol.33, No.8, part 1, pp.4491~4498 (1994).
54.H. Kuriyame, S. Kiyama, S. Nogchi, and Y. Kuwano, “Enlargement of Poly-Si Film Grain Size by Excimer Laser Annealing and Its Application to High-Performance Poly-Si Thin Film Transistor”, Jpn. J. Appl. Phys., Vol.30, No.12B, pp.3700~3703 (1991).
55.H. Kuriyama, T. Nohda, S. Ishida, T. Kuwahara, S. Noguchi, S. Kiyama, S. T. and S. Nakano, “Lateral Grain Growth of Poly-Si Films with a Specific Orientation by an Excimer Laser Annealing Method”, Jpn. J. Appl. Phys., Vol.32, No.12B, part 1, pp.6190~6195 (1993).
56.H. Kuriyama, T. Nohda, T. Kuwahara, K. Wakisaka, S. Kiyama and S. Tsuda, “Comprehensive Study of Lateral Grain Growth in Poly-Si Films by Excimer Laser Annealing and Its Application to Thin Film Transistors”, Jpn. J. Appl. Phys., Vol.33, No.10, part 1, pp.5657~5662 (1994).
57.H. Dislich, “Sol-Gel technology for thin films, fibers, preforms, electronics, and specialty shapes”, Park Ridge, New York, p.253 (1988).
58.M. Poate and James W. Mayer, “Laser Annealing of Semiconductors”, Academic, New York, p.1 (1982).
59.何建成,“鐵電陶瓷之化學製備法及其特性之研究”,清華大學博士論文,民國82年7月。
60.許獻文,“準分子雷射退火之低溫高介電常數鈦酸鍶鋇薄膜BaxSr1-xTiO3於動態隨機存取記憶體電容器之研究”,交通大學碩士論文,民國89年6月。
61.S. Y. Chen and I. W. chen, “Temperature-Time Texture Transition of Pb(Zr1-xTix)O3 Thin Films: І, Role of Pb-rich Intermediate Phases”, J. Am. Ceram. Soc., 77 [9], pp.2332~2336 (1994).
62.S. Y. Chen, “Texture evolution and electrical properties of oriented PZT thin films”, Materials Chemistry and Physics, 45, pp.159~162(1996).
63.K. Miyazawa, K. Ito, R. Maeda, “Structure and electrical properties of multilayer PZT films prepared by sol-gel processing”, Ceramics International, 26, pp.501~506 (2000).
64.C. K. Kwok, S. B. Desu, “Pyrochlore to Perovskite Phase Transformation in Sol-Gel Derived Lead Zirconate Titanate Thin Films”, Appl. Phys. Lett., 60, pp.1430~1432 (1992).
65.K. Higuchi, K. Miyazawa, T. Sakuma, K. Suzuki, “Microstructure Characterization of Sol-Gel Derived PZT Films”, J. Mater. Sci., 29, pp.436~441 (1994).
66.B. A. Tuttle, T. J. Headley, B. C. Bunker, R. W. Schwartz, T. J. Zender, C. L. Hernandez, K. C. Goodnow, R. J. Tissot, and J. Michael, “Microstructural Evolution of Pb(Zr,Ti)O3 Thin Films Prepared by Hybrid Metal-organic Decomposition”, J. Mater. Res., 7[7], pp.1876~1879 (1992).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top