跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/02/29 14:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳正鵬
研究生(外文):Jeng Pon Wu
論文名稱:燃燒噴流受側風衝擊時的流場與火焰特性
論文名稱(外文):Reacting Gaseous Jets in Cross Flows
指導教授:黃榮芳黃榮芳引用關係
指導教授(外文):Rong Fung Huang
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:122
中文關鍵詞:噴流火焰噴流角度燃燒側風
外文關鍵詞:Jet flameincidence anglescombustioncross-flow
相關次數:
  • 被引用被引用:0
  • 點閱點閱:263
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文探討具有可改變噴流角度裝置的風洞中進行的受橫風衝擊而偏折的噴流火焰之實驗研究結果。當噴流與橫風之間的夾角改變時,燃燒特性也會隨之改變。從火焰形狀、流動模態、火焰穩定性中,可以明顯判別出三種特性區域:同向流效應區(qj < 77o)、尾流穩定區(77o <qj <112o)以及逆向流效應區(qj >112o),其中qj 係噴流與側風之間的夾角。在相同特性區域中的火焰及流場,會呈現相似的特性。燃燒特性與流場結構在不同區域中,產生急遽的變化。這些特徵的形成,明顯是受流場行為所支配。在同向流影響區,火焰熄滅穩定性以及燃料混合能力較低。在尾流穩定區域中,火焰熄滅的橫風雷諾數極限較高。在逆向流影響區,火焰具有最佳的噴流穩定極限與燃燒效率。
另外,使用 shlieren光學技術,對三種噴流角度特徵區域,觀察在管口附近噴流密度的變化,暸解剪流層噴流的渦旋結構;再使用雷射都卜勒測速儀(LDV)對90o噴流角度的火焰流場量測中心平面時間平均速度場,並計算相對應的渦度場,從噴流柱的尾流區以及噴管尾流區的流場結構特性,定義五種流動模態,並以拓樸學分析應用在流場,探討特徵模態的奇異點關係。各個模態在噴管與噴流柱後方的尾流結構不同,主要是受複雜的氣流下洗、上衝、回流等的主導。噴流在管口受到兩側皆為較高的逆時針旋轉的渦度場。若噴口下風處的逆時針旋轉的渦度場效應持續增強,會使燃料無法停駐在噴管上,或許是造成火焰熄滅的主要因素。

The effects of incidences between jet and cross-flow on the combustion characteristics of a jet flame in cross flow are examined via flame appearances, flow patterns, flame stability, and hydrocarbon concentration distributions. The experiments are conducted in a wind tunnel with an incidence-variable jet-issuing device. Three characteristic regimes are identified: co-flow influenced (qj < 77o), wake-stabilized (77o < qj < 112o), and counter-flow influenced (qj > 112o) regimes, where qj is the angle between jet and cross-flow. Flames and flows in the same regime display similar characteristics. The combustion characteristics and flow structures in different regimes vary drastically due to the different aerodynamics induced by complex interaction among gaseous jet, cross flow, and solid burner. Flames in co-flow influenced regime have low fuel-processing capability and low flame blow-off stability limits in both the cross-flow and jet Reynolds numbers. The counter-flow influenced flames have the highest fuel-processing capability among three regimes.
Schilerence light technology show the density variation among three regimes of the near-wake flow field of the jet. There are series of coherent structures along the up-wind side of the jet. LDV measurements on the multiple-mode characteristics of the of a jet flame in a crossflow in various ranges of jet-to-crossflow momentum flux ratios. Topological analysis is undertaken to assist the clarification and understanding of the measured flow structures. The flow patterns, velocity distributions, and vorticity distributions show that the primary turbulent mixing mechanics occurring. in the near-wake flow field of the jet. The strength of counter-clock vorticity occurring near the tubr-tip will cause flame blows off.

中文摘要……………………………………………………………i
英文摘要……………………………………………………………ii
致謝…………………………………………………………………iii
目錄…………………………………………………………………iv
符號表………………………………………………………………vii
表圖索引……………………………………………………………viii
第一章 緒論………………………………………………………1
1.1 研究動機…………………………………………………1
1.2 文獻回顧………………………………………………2
1.3 本文目的…………………………………………………4
第二章 實驗設備、儀器及方法…………………………………6
2.1實驗設備…………..………………………………………6
2.2實驗儀器及方法…….……………………………………7
2.2.1雷射都普勒測速儀……………………………………7
2.2.2壓力轉換器……………………………………………8
2.2.3浮子式流量計….……………………………………8
2.2.4濃度分析儀….………………………………………9
2.2.5 Schlieren光學系統...…………………………………9
第三章 火焰形狀、特徵與熄滅穩定性…………………………10
3.1火焰形狀與火焰長度……………………………………10
3.2火焰熄滅穩定性…………………………………………13
第四章 流場特性……………………………………………16
4.1流動型態………………………………………………18
4.2中心平面的速度向量與流線……………………………20
4.2.1下洗流動模態…………………………………………21
4.2.2第一型過渡模態……………………………………22
4.2.3橫向流支配模態……………………………………23
4.2.4第二型過渡模態……………………………………24
4.2.5噴流支配模態…………………………………………24
4.3拓樸分析.…………………………………………………25
4.4臨界點的分佈……………………………………………28
4.5噴流中心線的軌跡……………………………………30
4.6沿噴流中心線軌跡的流動性質………………………31
4.7噴管附近尾流的流動性質……………………………33
4.7.1下洗流動模態…………………………………………34
4.7.2第一型過渡模態……………………………………35
4.7.3橫向流支配模態………………………………………37
4.7.4第二型過渡模態………………………………………38
4.7.5噴流支配模態………………………………………40
4.8渦度場……………………………………………………41
4.8.1下洗流動模態…………………………………………41
4.8.2第一型過渡模態……………………………………42
4.8.3橫向流支配模態………………………………………43
4.8.4第二型過渡模態………………………………………44
4.8.5噴流支配模態………………………………………44
第五章 濃度場……………………………………………………47
5.1未燃燒碳氫化合物的濃分佈……………………………47
5.2燃燒產物的濃度分佈……………………………………48
5.2.1 CO的濃度分佈……………………………………48
5.2.2 CO2的濃度分佈………………………………………49
5.2.3 O2的濃度分佈………………………………………50
第六章 結論與建議………………………………………………52
6.1結論………………………………………………………52
6.2建議………………………………………………………53
參考文獻……………………………………………………………54

[1]Huang, R. F. and Chang, J. M., “The Stability and Visualized Flame and Flow Structures of a Combusting Jet in a Cross Flow,” Combustion and Flame, Vol. 98, 1994, pp.267-278.
[2]Gollahalli, S. R., Brzustowski, T. A., and Sullivan, H. F., “Characteristics of a turbulent Propane Diffusion Flame in a Cross-Wind,” Transaction of CSME, Vol. 3, No. 4, 1975, pp. 205—214.
[3]Brzustowski, T. A., Gollahalli, S. R., and Sullivan, H. F., “The turbulent hydrogen diffusion flame in a cross-wind,” Combustion Science and Technology, Vol. 11, 1975, pp. 29-33.
[4]Brzustowski, T. A., “The Hydrocarbon Turbulent Diffusion Flame in Subsonic Cross-Flow,” AIAA Paper 77-222, January 1977.
[5]Botors, P. E. and Brzustowski, T. A., Seventeenth Symposium (Int.) on Combustion, The Combustion Institute, 1978, pp. 389-397.
[6]Kalghatgi, G. T., “Blow-Out Stability of Gaseous Jet Diffusion Flames Part II: Effect of Cross Wind,” Combustion Science and Technology, Vol. 26, No. 5Ƃ, 1981, pp. 241-244.
[7]Birch, A. D., Brown, D. R., Fairweather, M., and Hargrave, G. K., “An Experimental Study of a turbulent Natural Gas Jet in a Cross-Fow,” Combustion Science and Technology, Vol. 66, No. 4-6, 1989, pp. 217- 232.
[8]Askari, A., Bullman, S. J., Fairweather, M., and Swaffield, F., “The Concentration Field of a Turbulent Jet in a Cross-Wind,” Combustion Science and Technology, Vol. 73, No. 1-3, 1990, pp. 463- 478.
[9]Ellzey, J. L., Berbee, J. G., Tay, Z. F., and Foster, D. E., “Total Soot Yield from a Propane Diffusion Flame in Cross-Flow,” Combustion Science and Technology, Vol. 71, No. 1-3, 1990, pp. 41-52.
[10]Coelho, S. L. V. and Hunt, J. C. R., “The Dynamics of the Near Field of Strong Jets in Crossflow,” J. of Fluid Mech., Vol. 200, 1989, pp. 95-120.
[11]Gollahalli, S. R. and Nanjundappa, B., “Burner Wake Stabilized Gas Jet Flames in Cross-Flow,” Combustion Science and Technology, Vol. 109, 1995, pp. 327-346.
[12]Huang, R. F. and Yang, M. J., “Thermal and Concentration Fields of Burner-Attached Jet Flames in Cross Flow,” Combustion and Flame, Vol. 105, 1996, pp. 211-224.
[13]Huang, R. F. and Chang, J. M., “Coherent Structure in a Combusting Jet in Crossflow,” AIAA, Vol. 32, No. 6, 1994, pp. 1120-1125.
[14]Rudinger, G. and Moon, L., “Laser-Doppler Measurements in a Subsonic Jet Injet into a Subsonic Cross Flow,’’ J. Fluids Engr., Trans. ASME, Vol. 98, No. 3, 1976, pp. 516-520.
[15]Andreopoulos, J. and Rodi, W., “Experimental Investigation of Jets in a Crossflow,” J. Fluid Mech., Vol. 138, 1994, pp. 93-127.
[16]Andreopoulos, J., “Wind Tunnel Experiments on Cooling Tower Plumes,” Part I : In Uniform Cross Flow, J. ASME Paper 86—WA/HT T-31, 1986.
[17]Jordinson, R., “Flow in a Jet Directed Normal to the wind, ’’ R & M, No. 3074, Oct. 1956, Aero. Res. Council, Great Britain.
[18]Keffer, J. F. and Baines, W. D., “The Round Turbulent Jet in a Cross-Wind,’’ Journal of Mechanical, Vol. 15, No. 4, 1963, pp. 481-496.
[19]Margason, R. J., “The Path of a Jet Directed at Large Angles to a Subsonic Free Stream,’’ NASA TN D-4919, 1968.
[20]Pratte, B. D. and Baines, W. D., “Profiles of the Round Turbulent Jet in a Cross Flow,’’ Journal of Hydraulics Division, Proc. ASCE, Hy6. Vol. 93, Nov. 1967, pp. 53-64.
[21]Ramsey, Y. and Greber, I., “Interaction of a Heated Jet with a Deflecting Stream,’’ Rept. 71-Ht-2, 1971, ASME.
[22]Kamotani, Y. and Greber, I., “Experiments on a Turbulent Jet in a Cross Flow,’’ AIAA J., Vol. 10, No. 11, 1972, pp. 1425-1429.
[23]Fearn, R. and Weston, R., “Vorticity Associated with a Jet in a Cross Flow,’’ AIAA J., Vol. 12, No. 12, 1974, pp. 1666-1671.
[24]Grabb, D., Durao, D. F. G., and Whitelaw, J. H., “A Round Jet Normal to a Crossflow,’’ J. Fluid Engr., Trans. ASME, Vol. 103, 1981, pp. 142-153.
[25]Olivier, S. E. and James K. K., “On the structures in the near-wake region of an elevated turbulent jet in a crossflow,” J. Fluid Mech., Vol. 333, 1997, pp. 161-195.
[26]Moussa, Z. M., John, W. T., and Eskinazi, S., “The near field in the mixing of a rounf jet with a cross-stream,” J. Fluid Mech. , Vol. 80, Part 1, 1997, pp. 49-80.
[27]Kelso, R. M., Lim, T. T., and Perry, A. E., “An experimental study of round jets in cross-flow,” J. Fluid Mech., Vol. 306, 1996, pp. 49-80.
[28]Savas, O., Huang, R. F., and Gollahalli, S. R., “Structure of the Flow Field of a Nonpremixed Gas Jet Flame in Cross-Flow,” Journal of Energy Resources Technology, ASME Transaction, Vol. 119, June 1997, pp. 137-144.
[29]Tsuji, H., “Counterflow Diffusion Flames,” Prog. Energy Combust. Sci., Vol. 8, 1982, pp. 93-119.
[30]Hermanson, J. C., “Stability and Emissions of Lean, Turbulent, premixed Flames with Very lean Coflow’’, AIAA J., Vol. 35, No. 11, 1997, pp. 1705-1710.
[31]Nickels, T. B. and Perry, A. E., “An Experimental and theoretical study of the turbulent coflowing jet,’’ J. Fluid Mech., Vol. 309, 1996, pp. 157-182.
[32]Huang, R. F. and Wang, S. M., “Characteristic Flow Modes of Wake-Stabilized Jet Flames in a Transverse Air Stream,” Combustion and Flame, Vol. 117, No. 1/2, 1999, pp.59-77.
[33]Chen, T. S. and Chiou, C. R., “Experimental Investigation on the Characteristics of Turbulent Hydrogen Jet Flames,” Comb. Sci. and Tech., Vol. 136, 1998, pp. 81-94.
[34]Hussian, A. K. M. F. and Ramjee, V., “Effect of the axisymmetric contraction shape on incompressible turbulent flow,” J. of Fluids Engr., March 1976, pp. 58-69.
[35]Flagan, C. R. and Seinfeld, J. H., Fundamentals of Air Pollution Engineering, Prentice Hall, Englewood Cliffs, NJ, 1988, pp. 295-307.
[36]White, F. M., Viscous Fluid Flow, McGraw-Hill Book Company, 1991, pp. 394-407.
[37]Brown, G. L. and Roshko, A., “On density Effects and Large Structure in Turbulent MixingLayers,” Journal of Fluid Mechanics, Vol. 64, July 1974, pp. 775-816.
[38]Yule, A. J., “Large-scale Structure in the Mixing Layer of a Round Jet,” J. of Fluid Mech., Vol. 89, Dec. 1978, pp. 413-432.
[39]Coles, D., “The Uses of Coherent Structure,” AIAA Paper 85-0506, Jan. 1985.
[40]Tritton, D. J., Physical Fluid Mechanics, Oxford University Press, Oxford, 1988, pp. 289-294.
[41]Brizzi, L. E., Foucault, E., and Bousgarbies, J. L., “Vortices Organization in the near Field of a Jet issuing Normally into a Crossflow,” J. Flow Visualization & Image Processing, Vol. 5, 1998, pp. 17-28.
[42]Lighthill, M. J., Laminar Boundary Layers, Ed. Rosenhead, L., Oxford University, College of Engr, 1963, pp. 48-88.
[43]Perry, A. E. and Fairlie, B. D.," Critical points in flow patterns," Adv. Geophys. B, Vol. 18, 1974, pp. 299-315.
[44]Perry, A. E., Chong, M. S., and Lim, T. T., "The Vortex-shedding Process Behind Two-dimensional Bluff Bodies," J. Fluid Mech., Vol. 116, 1982, pp. 77-90.
[45]Perry, A. E. and Steiner, T. R., "Large-scale Vortex Structure in Turbulent Wakes Behind Bluff Bodies. Part1. Vortex Formation," J. Fluid Mech., Vol. 174, 1987, pp. 233-270.
[46]Steiner, T. R. and Perry, A. E., "Large-scale Vortex Structure in Turbulent Wakes Behind Bluff Bodies. Part2. Far-wake Structure," J. Fluid Mech., Vol. 174, 1987, pp. 271-298.
[47]Hunt, J. C. R., Abell, C. J., Peterka, J. A., and Woo, H.," Kinematical Studies of The Flow Around Free or Surface-mounted Obstacles; Applying Topology to Flow Visualization," J. Fluid Mech., Vol. 86, 1978, pp. 299-446.
[48]Coutanceau, M. and Pineau, G., Some Typical Mechanisms in The Early Phase of The Vortex-shedding Process From Particle-streak Visualization. Atlas of Visualization III, Eds. Nakayama, Y. and Tanida, Y., CRC Press, Boca Raton, 1997, pp. 43-68.
[49]Schlichting, H., Boundary Layer Theory, McGraw-Hill Book Company, 1979, pp. 175-179.
[50]Karagozian, A. R., “The flame structure and vorticity generated by a chemically reacting transverse jet,” AIAA Journal, Vol. 24, 1986, pp. 1502-1507.
[51]Huang, R. F., and Sheen, H. J., “The flow and thermal structures of a turbulent combusting jet in cross flow,” CSME, Vol. 17, No. 4, 1996, pp.343-351.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top