跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/17 03:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳美蓉
研究生(外文):Mei Rong Chen
論文名稱:自相似勢能法應用於動態裂縫延伸之研究
論文名稱(外文):The Application of Self-Similar Potentials to Dynamic Crack Propagation
指導教授:張燕玲張燕玲引用關係
指導教授(外文):Yen-Ling Chung
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:營建工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:89
語文別:中文
論文頁數:80
中文關鍵詞:自相似勢能法非對稱延伸裂縫表面位移動應力強度因子
外文關鍵詞:The method of self-similar potentialsNonsymmetric crack expansionCrack surface displacementDynamic stress intensity factor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:282
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主要利用自相似勢能法分析 I 型、II 型、III 型裂縫非對稱延伸之動態行為,以及 I 型延伸裂縫受集中載重作用於裂縫表面之情形。假設一均質、等向性之彈性體,當時間■時,無裂縫存在,而當時間■時,裂縫開始形成並以定速度沿著x軸之正負方向延伸。針對非對稱延伸:假設有一均佈應力載重僅作用於■之裂縫表面,使得右側裂縫尖端之延伸速度為ms,而左側裂縫尖端之延伸速度為s,其中■且為常數。針對中央開裂之裂縫,其承受集中載重作用之問題,不再為自相似問題;但若考慮疊加,並引入座標原點平移及延時,則自相似勢能法仍可適用。
文中首先以自相似勢能法求得全解,再計算其裂縫表面位移及動應力強度因子。結果顯示,若裂縫延伸速度非常慢而趨近於零,則動應力強度因子等於靜態應力強度因子;若裂縫延伸速度接近於Rayleigh波之波速,則動應力強度因子為零。此外,自相似勢能法與疊加之結合亦可適用於向外擴展之均佈載重作用於部分裂縫表面之問題。

This paper applies the method of self-similar potentials to analyze the dynamic behaviors of the problems of mode-I, mode-II, and mode-III cracks propagating nonsymmetrically and the phenomenon of mode-I crack propagating with a constant speed subjected to a concentrated load on the crack surface. It is assumed that an unbounded homogeneous isotropic elastic material is at rest for time ■. However, for time ■, a central crack starts to extend from zero length along the x-axis. For nonsymmetric extension, on the crack surfaces of ■, there exists uniform distributed load such that the rightmost crack tip propagates with speed ms, while the leftmost crack tip with speed s, where ■ and is constant. The problem of mode-I crack propagating with a constant speed subjected to a concentrated load on the crack surface is not a self-similar problem. However, the method of self-similar potentials in conjunction with superposition can be successfully applied if the origin shift and the time delay are considered.
After the complete solution is obtained, attention is focused on the crack surface displacements and dynamic stress intensity factors. The results of this study show that the DSIF is equal to the static SIF when the crack-tip speed is zero, and DSIF is zero as the crack-tip speed approaches the Rayleigh-wave speed. Moreover, the combination of SSP method and the superposition scheme can be applied to the expanding uniformly distributed load acting on a portion of the crack surfaces.

封面
目錄
第一章 緒論
1.1 研究動機
1.2 文獻回顧
1.3 研究方法
1.4 研究內容
第二章 自相似勢能法之簡介
2.1 前言
2.2 平面應變問題之自相似勢能法
2.2.1 運動方程式
2.2.2 波動方程式
2.2.3 (x,y,t)空間與θ複數平面之映射關係
2.2.4 自相似勢能表示位移場及應力場
2.3 反平面(anti-plane)問題之自相似勢能
第三章 非對稱裂縫延伸之動態解析
3.1 前言
3.2 Ⅰ型裂縫問題
3.2.1 問題之陳述
3.2.2 問題之解
3.2.3 裂縫張開位移與動應力強度因子
3.3 Ⅱ型裂縫問題
3.3.1 問題之陳述
3.3.2 進行求解
3.3.3 裂縫滑動位移與動應力強度因子
3.4 Ⅲ型裂縫問題
3.4.1 問題之陳述及求解
3.4.2 裂縫撕開位移與動應力強度因子
3.5 均佈應力載重作用於整個裂縫表面之Ⅰ型裂縫問題
3.5.1 問題之陳述
3.5.2 問題之求解
3.5.2.1 均佈應力載重僅作用於左側裂縫表面之求解
3.5.2.2 原問題之完整解
第四章 受集中載重作用之Ⅰ型裂縫延伸之動態解析
4.1 前言
4.2 問題之陳述
4.3 問題之求解
4.3.1 第一部分(case A)之求解
4.3.2 第二部分(case B)之求解
4.3.3 第三部分(case C)之求解
4.3.4 原問題之完整解
4.4 動應力強度因子
4.4.1 集中載重作用之DSIF之探討
4.4.2 向外擴展之均佈載重作用之DSIF之探討
第五章 結論與建議
5.1 結論
5.2 建議
參考文獻
作者簡介
其他

1. Kostrov, B. V., “The Axisymmetric Problem of Propagation of a Tension Crack,” Journal of Applied Mathematics and Mechanics, 28, pp. 793-803(1964).
2. Kostrov, B. V., “Self-similar Problems of Propagation of Shear Cracks,” Journal of Applied Mathematics and Mechanics, 28, pp. 1077-1087 (1964).
3. Sih, G. C. and Embley, G. T., “Sudden Twisting of a Penny-shaped Crack,” Journal of Applied Mechanics, 39, pp. 395-400(1972).
4. Eringen, A. C. and Suhubi, E. S., Elastodynamics, Vol. II, Academic Press, New York(1975).
5. Nilsson, F., “A Note on the Stress Singularity at a Nonuniformly Moving Crack Tip,” Journal of Elasticity, 4, pp. 73-75(1974).
6. Ing, Y. S. and Ma, C. C., “Transient Analysis of a Propagating Crack with Finite Length Subjected to a Horizontally Polarized Shear Wave,” International Journal of Solids and Structures, 36, pp. 4609-4627(1999).
7. Freund, L. B., Dynamic Fracture Mechanics, Cambridge University Press, New York, pp. 334-336(1990).
8. Freund, L. B., “The Stress Intensity Factor Due to Normal Impact Loading of the Faces of a Crack,” International Journal of Engineering Science, 12, pp. 179-189(1974).
9. Chung, Y. L., “The Transient Solutions of Mode-I, Mode-II, Mode-III Cracks Problems,” Journal of the Chinese Institute of Civil and Hydraulic Engineering, 3, pp. 51-61(1991).
10. Yoffe, E. H., “The Moving Griffith Crack,” Philosophical Magazine, 42, pp. 739-750(1951).
11. Bluhm, J. I., “Fracture Arrest Capabilities of Annularly Reinforced Cylindrical Pressure Vessels,” Experimental Mechanics, 3, pp. 57-66 (1963).
12. Bluhm, J. I., “Fracture Arrest,” Fracture, Liebowitz, H., Eds., Academic, pp. 1-63(1969).
13. Radok, J. R. M., “On the Solution of Problems of Dynamic Plane Elasticity,” Quarterly of Applied Mathematics, 14, pp. 289-298(1956).
14. Tait, R. J. and Moodie, B., “Complex Variable Methods and Closed Form Solutions to Dynamic Crack and Punch Problems in the Classical Theory of Elasticity,” International Journal of Engineering Science, 19, pp. 221-229(1981).
15. Georgiadis, H. G. and Theocaris, P. S., “The Keldysh-Sedov Method for a Closed Form Elastodynamic Solution of the Cracked Strip Under Antiplane Shear,” International Journal of Engineering Science, 24, pp. 1135-1140(1986).
16. Georgiadis, H. G., “On the Stress Singularity in Steady-State Transonic Shear Crack Propagation,” International Journal of Fracture Mechanics, 30, pp. 175-180(1986).
17. Gakenheimer, D. C. and Miklowitz, J., “Transient Excitation of an Elastic Half Space by a Point Load Traveling on the Surface,” Journal of Applied Mechanics, pp. 505-515(1969).
18. Freund, L. B., “Crack Propagation in an Elastic Solid Subjected to General Loading - I Constant Rate Extension,” Journal of the Mechanics and Physics of Solids, 20, pp. 129-140(1972).
19. Freund, L. B., “Crack Propagation in an Elastic Solid Subjected to General Loading - II Non-uniform Rate of Extension,” Journal of the Mechanics and Physics of Solids, 20, pp. 141-152(1972).
20. Freund, L. B., “Crack Propagation in an Elastic Solid Subjected to General Loading - III Stress Wave Loading,” Journal of the Mechanics and Physics of Solids, 21, pp. 46-61(1973).
21. Freund, L. B., “Crack Propagation in an Elastic Solid Subjected to General Loading - IV Obliquely Incident Stress Pulse,” Journal of the Mechanics and Physics of Solids, 22, pp. 137-146(1974).
22. Cherepanov, G. P., “Some Dynamic Problems of the Theory of Elasticity - a Review,” International Journal of Engineering Science, 12, pp. 665-690(1974).
23. Baker, B. R., “Dynamic Stresses Created by a Moving Crack,” Journal of Applied Mechanics, pp. 449-458(1962).
24. Achenbach, J. D., “Crack Propagation Generated by a Horizontally Polarized Shear Wave,” Journal of the Mechanics and Physics of Solids, 18, pp. 245-259(1970).
25. Kostrov, B. V., “Unsteady Propagation for Longitudinal Shear Cracks,” Journal of Applied Mathematics and Mechanics, 30, pp. 1241-1247 (1966).
26. Kostrov, B. V., “On the Crack Propagation with Variable Velocity,” International Journal of Fracture Mechanics, 11, pp. 47-56(1975).
27. Achenbach, J. D. and Bazant, Z. P., “Elastodynamic Near-Tip Stress and Displacement Fields for Rapidly Propagating Cracks in Orthotropic Materials,” Journal of Applied Mechanics, 42, pp. 183-189(1975).
28. Winkler, S., Shockey, D. A. and Cruuan, D. R., “Crack Propagation at Supersonic Velocities : I,” International Journal of Fracture Mechanics, 6, pp. 151-158(1970).
29. Chung, Y. L., “The Stress Singularity of Mode-I Crack Propagating with Transonic Speed,” Engineering Fracture Mechanics, 52, pp. 977-985 (1995).
30. Goetschel, D. B., Dong, S. B. and Muki, R., “A Global-local Finite Element Analysis of Axisymmetric Scattering of Elastic Waves,” Journal of Applied Mechanics, ASME, 49, pp. 816-821(1982).
31. Rajapakse, R. K. and Karssudhi, N. D., “An Efficient Elastodynamic Infinite Element,” International Journal of Solids and Structures, 22, pp. 643-657(1986).
32. Koh, H. M., “A Mixed Eulerian-Lagrangian Model for the Analysis of Dynamic Fracture,” University of Illinois at Champaign-Urbana(1986).
33. Ma, C. C., “Initiation, Propagation, and Kinking of an In-Plane Crack,” Journal of Applied Mechanics, ASME, 55, pp. 587-595(1988).
34. Ma, C. C. and Chen, S. K., “Investigations on the Stress Intensity Factor Field for Unstable Dynamic Crack Growth,” International Journal of Fracture, 58, pp. 345-359(1992).
35. Tsai, C. H. and Ma, C. C., “Transient Analysis of a Semi-infinite Crack Subjected to Dynamic Concentrated Forces,” Journal of Applied Mechanics, ASME, 59, pp. 804-811(1992).
36. Tsai, C. H. and Ma, C. C., “Transient Analysis of a Propagating In-Plane Crack in a Finite Geometry Body Subjected to Static Loadings,” Journal of Applied Mechanics, ASME, 64, pp. 620-628(1997).
37. Tsai, C. H. and Ma, C. C., “Theoretical Transient Analysis of the Interaction Between a Dynamically Propagating In-Plane Crack and Traction-Free Boundaries,” Journal of Applied Mechanics, ASME, 64, pp. 819-827(1997).
38. Ma, C. C. and Ing, Y. S., “Transient Analysis of Dynamic Crack Propagation with Boundary Effect,” Journal of Applied Mechanics, ASME, 62, pp. 1029-1038(1995).
39. Ing, Y. S. and Ma, C. C., “The Near Tip Field Expansion of a Propagating Anti-Plane Crack with Nonuniform Velocity,” Journal of the Chinese Institute of Engineers, 22, pp. 293-300(1999).
40. Thompson, J. C. and Robinson, A. R., “Exact Solution of Some Dynamic Problems of Indentation and Transient Loadings of an Elastic Half Space,” Civil Engineering Studies, SRS 350, University of Illinois at Champaign-Urbana(1969).
41. Johnson, J. J. and Robinson, A. R., “Wave Propagation in Half Space Due to an Interior Point Load Parallel to the Surface,” Civil Engineering Studies, SRS 388, University of Illinois at Champaign-Urbana(1972).
42. Robinson, A. R. and Thompson, J. C., “Transient Stresses in an Elastic Half Space Resulting from the Frictionless Indentation of a Rigid Wedge-Shaped Die,” ZAMM, 54, pp. 139-144(1974).
43. Robinson, A. R. and Thompson, J. C., “Transient Stresses in an Elastic Half Space Resulting from the Frictionless Indentation of a Rigid Axially Symmetric Conical Die,” Cambridge Philosophical Society, Proceedings, 76, pp. 369-379(1974).
44. Seyyedian-Choobi, M. and Robinson, A. R., “Motion on the Surface of a Layered Elastic Half Space Produced by a Buried Dislocation Pulse,” Civil Engineering Studies, SRS 421, University of Illinois at Champaign-Urbana(1975).
45. Robinson, A. R. and Thompson, J. C., “Transient Disturbance in a Half-space During the First Stage of the Frictionless Indentation of a Smooth Rigid Die of Arbitrary Shape,” Quarterly of Applied Mathematics, 33, pp. 215-223(1975).
46. Thompson, J. C. and Robinson, A. R., “An Exact Solution for the Superseismic Stage of Dynamic Contact Between a Punch and an Elastic Body,” Journal of Applied Mechanics, 44, pp. 583-586(1977).
47. Smirnov, V. I., A Course of Higher Mathematics, Addison-Wesley(1964).
48. Chung, Y. L., “Solutions of Some Elastodynamic Problems with Application to Crack Propagation,” University of Illinois at Champaign-Urbana(1989).
49. Chung, Y. L. and Robinson, A. R., “The Transient Problem of a Mode-III Interface Crack,” Engineering Fracture Mechanics, 41, pp. 321-330(1992).
50. Chung, Y. L. and Robinson, A. R., “Constant-speed Propagation of a Penny-shaped Interface Crack Under Pure Torsion,” Engineering Fracture Mechanics, 41, pp. 331-338(1992).
51. Chung, Y. L., “Analysis of a Running Crack Stopping Suddenly-Solution for Small Time After Stop,” The Chinese Journal of Mechanics, 13, pp. 175-183(1997).
52. Graff, K. F., Wave Motion in Elastic Solids, Ohio State University Press, Columbus(1975).
53. Hellan, K. R., Introduction to Fracture Mechanics, McGraw-Hill, New York(1984).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 張志明(明90)。情境領導理論的因素整合探討。學校行政,11,頁31-44。
2. 高熏芳(民87)。校長評鑑之應為與難為。教師天地,96,頁19-24。
3. 柯進雄(民83)。衝突理論與學校領導(下)。研習資訊,11(3),頁63-67。
4. 洪福財(民85)。如何加強學校家長會之功能。教育資料文摘,216,頁148-172。
5. 洪福財(民84)。學校組織衝突成因及其因應策略。教育資料文摘,36(5),頁171-192。
6. 洪哲義(民86)。社區與學校。臺灣教育,558,頁20-27。
7. 周愫嫻(民85)。家長會與學校的對話關係。北縣教育,13,頁20-24。
8. 周淑玲(民81)。教育行政機關推展公共關係之研究。教育資料文摘,178,頁124-149。
9. 邱淑華(民86)。學校如何拓展公共關係。教師天地,86,頁22-26。
10. 邱文彬、林美珍(民89)。後形式思考與人際關係之容忍性、同理心、自我揭露、自主性之關係。教育心理學報,32(1),頁67-94。
11. 林慶翰(民81)。公共關係的真諦。人事管理,29(8),頁4-14。
12. 林惠真(民86)。敞開溝通大門,共迎校務合議時代的來臨-讓教師會、家長會、學校行政共創三贏局面。教師天地,86,頁38-41。
13. 林海清(民84)。研訂校務發展計劃實務探討。教育研究,46,頁53-58。
14. 林明地(民87)。家長參與學校活動與校務:台灣省公私立國民中小學校長的看法分析。教育政策論壇,1(2),頁155-187。
15. 林志成(民90)。學校公共關係之迷思困境暨其推動策略。學校行政(11),頁4-13。