跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/14 02:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃建源
研究生(外文):Jian-Yuan Huang
論文名稱:岩栓對栓合節理之影響
論文名稱(外文):The Research of the Model Bolt Affects the Bolted Joint.
指導教授:陳堯中陳堯中引用關係
指導教授(外文):Yao-Chung Chen
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:營建工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:154
中文關鍵詞:岩栓節理模擬岩石直接剪力試驗
外文關鍵詞:boltjointmodel rockdirect shear test
相關次數:
  • 被引用被引用:3
  • 點閱點閱:356
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用渥太華標準砂、石膏與水拌合製成規則鋸齒狀節理面之模擬岩體,並以鋁合金為模擬岩栓,埋設在節理岩體中。進行模擬岩體直接剪力試驗,並改變正向應力、模擬岩栓埋設角度、岩栓間距及岩栓表面的粗糙等四項參數,研究岩栓對栓合節理剪力強度之影響。
試驗結果顯示,直接剪力試驗的最大剪應力與正向應力,經強度標準化後,其圖形為二直線之組合,與Patton的強度模式相同,並在高正向應力時,有一強度截距c值。而加設岩栓之試體,其標準化圖符合Ludvig的強度模式。
在模擬岩栓的埋設上,模擬岩栓的加設可增加試體的尖峰剪力強度,但增加的幅度不大。不過,對膨脹行為的束制上,有不錯的表現。有此可知,岩栓的使用,主要並不是為了增加岩體對剪應力的阻抗能力,而是利用岩栓本身的較佳的延展性,來抵抗岩體間的變位。表面粗糙岩栓,對剪力阻抗及試體剪脹行為抑制的表現上,較表面光滑岩栓來的好。
在岩栓埋設角度對剪力阻抗的貢獻上,與節理面夾45o角之岩栓表現最佳,而與節理面夾120o角之岩栓表現最差;在對剪脹效應之束制上,與節理面夾60o角之岩栓束制效果最好,而與節理面夾135o角之岩栓效果最差。
This is a research to do the direct shear test of the rock model, trying to find out how the model bolt affects shearing stress of the bolted joint.
The rock model in this research is made by mixing the Ottawa silica sand, gypsum and water to form a rock model of regular saw-tooth joint. An alloyed aluminum model bolt is buried to connect the joint rock masses. The experiment is to change the normal stress, set angle of bolt, distance between bolts and the roughness of model bolts surface for comparison.
Results of the tests indicate that, after standardization, the graphic of maximum shearing stress and normal stress of the direct shear test is a combination of two straight lines in the case of the tested object which has no bolt. And this graphic is the same as Patton’s law for joint shear strength; there is a cohesion under high normal stress. While in the case of tested object with bolts, the standardized graphic matches Ludvig estimate for shear strength.
The use of model bolt only slightly increases the peak shear strength of tested object (as comparing with one without bolt). However, it is good for restraining dilatation. Therefore, the use of bolt is primarily for resisting displacement between rock models with its better extensibility but enhancing the resistance of rock mass against shear stress. The rough-surfaced model bolt offers shearing resistance and restrains dilatation better than smooth surfaced one.
As to the set angle of model bolt, a 45° set angle of bolt contributes best effect on shearing resistance; while a 120° set angle shows worst performance. On the other hand, a 60°set angle performs best on restraining dilatation; the 135° set angle, worst.
摘要 ……………………………………………………………Ⅰ
ABSTRACT ………………………………………………………Ⅱ
致謝 ……………………………………………………………Ⅲ
目錄 ……………………………………………………………Ⅳ
表目錄 …………………………………………………………Ⅶ
圖目錄 …………………………………………………………Ⅷ
符號說明 ………………………………………………………XIⅪⅪ
第一章 緒論…………………………………………………… 1
1-1前言………………………………………………… 1
1-2研究動機與目的…………………………………… 1
1-3研究內容…………………………………………… 2
第二章 文獻回顧……………………………………………… 4
2-1模擬材料之相似定律……………………………… 4
2-1-1相似定律簡介……………………………………… 4
2-1-2自然岩石之物理量………………………………… 8
2-2模擬岩石材料……………………………………… 9
2-2-1模擬材料選擇……………………………………… 9
2-2-2模擬材料配比選擇…………………………………10
2-3人工弱面岩石直接剪力強度模式…………………11
2-3-1人工弱面岩石之模擬方式…………………………11
2-3-2直接剪力強度模式…………………………………13
2-3-3節理面之變形行為…………………………………17
2-3-4粗糙度描述…………………………………………19
2-3-5岩栓的影響…………………………………………20
2-4剪力強度之規模效應………………………………24
2-5直接剪力試驗之破壞模式…………………………25
第三章 試驗方式與步驟………………………………………49
3-1模擬材料……………………………………………49
3-2試體準備……………………………………………49
3-3單軸壓縮試驗………………………………………51
3-4模擬岩栓握裹力試驗………………………………52
3-5直接剪力試體………………………………………53
3-5-1直接剪力試驗試體…………………………………53
3-5-2直接剪力試驗………………………………………54
第四章 試驗結果與分析………………………………………60
4-1模擬材料基本材料性質試驗結果…………………60
4-1-1單軸壓縮試驗及直接拉力試驗結果………………60
4-1-2握裹力試驗結果……………………………………61
4-2直接剪力試驗結果與分析…………………………63
4-2-1直接剪力試驗結果…………………………………63
4-2-2直接剪力試驗結果之分析…………………………65
第五章 結論與建議……………………………………………150
5-1結論…………………………………………………150
5-2建議…………………………………………………151
參考文獻 ………………………………………………………152
附錄 A ………………………………………………………… Ⅰ
附錄 B ………………………………………………………… Ⅳ
1.洪如江(1977),「工程地質之應用」,土壤與基礎工程研討會論文專
集,pp. 151~179。
2.洪啟德(1989),「岩石之模擬材料與直接剪力破壞模式之研究」,碩士
論文,國立台灣大學土木系。
3.施國欽(1999),「岩石力學」,文笙書局,台北。
4.張文城(1988),「岩石節理面之粗糙度與其剪力強度之研究」,博士論
文,國立台灣大學土木系。
5.陳堯中、陳志南、李新璵(1994),「計測岩栓量測儀之研製及岩栓力學
行為之探討」,財團法人台灣營建研究中心。
6.陳堯中(1995),「節理岩體中灌漿岩栓力學行為之研究」,行政院國家
科學委員會專題研究計畫成果報告。
7.楊長義(1992),「模擬規則節理岩體強度與變形性之研究」,博士論
文,國立台灣大學土木系。
8.鄭名志(1999),「栓合節理之直剪試驗」,碩士論文,國立台灣科技大
學。
9.Azuar, J. J. (1977), “Stabilisation des massifs rocheux
fissures par barres d’acier scelles,” Rap. De Rech. LPC No.
73(間接引用自陳堯中(1995))
10.Bandis, S. C., A. C. Lumsden & N. R. Barton (1983),
“Fundamentals of Rock Joint Deformation,” Int. J. Rock
Mech. Min. Sci. & Geotech. Abstr., 20, pp. 249~268.
11.Barton, N. R. (1970), “A Low Strength Material for
Simulation of the Mechanical Properties of Intact Rock in
Rock Mechanics Models,” Proc. II. Int. Conf. ISRM, Beograd,
pp. 3~15.
12.Barton, N. R. (1973), “Review of a New Shear Strength
Criterion for Rock Joint,” Engng. Geology, 7, pp. 287~332.
13.Barton, N. R. (1976), “The Shear Strength of Rock Joints,”
Int. J. Rock Mech. Min. Sci. & Geotech. Abstr., 13, pp.
255~279.
14.Bjurstrom, S. (1974), “Shear Strength of Hard Rock Joints
Reinforced by Grouted Untensioned Bolts,” Proc. III. Int.
Conf. ISRM, Denver, IIB, 1194ff.(間接引用自陳堯中(1995))
15.Deere, D. E. (1968), “Geological Considerations,” In K.G.
Stagg and O. C. Zienkiewicz (eds.), Rock Mechan-ics in
Engineering Practice, John Wiley & Sons, London.
16.Dight, P. M. (1982), “Improvement to the stability of rock
walls in open pit mines,” Ph. D. Thesis, Monsh University,
Australia.(間接引用自陳堯中(1995))
17.Gerrard, C. & G. Pande (1983), “Predicted Response of Two
Cases of Reinforced Jointed Rock,” Proc. Int. Symp. Rock
Bolting, Abisko, pp. 47~53.
18.Goodman, R. E. (1989), “Introduction to Rock Mechanics
Second Edition,” John Wiley & Sons, New York.
19.Hoek, R. E. (1998), “ROCK ENGINEERING: Course notes by
Evert Hoek,” Evert Hoek Consulting Engineer Inc, Canada.
20.ISRM (1981), “Rock Characterization Testing and Moni-
toring,” ed. by Brown E. T., Pergamon Press, Oxford.
21.Langhaar, H. L. (1980), “Dimensional Analysis and The-ory
of Models,” Robert E. Krieger Publishing Company,
Huntington, New York.(間接引用自楊長義(1992))
22.Larsson, H. & T. Olofsson (1983), “Bolt action in jointed
rock,” Proc. Int. Symp. Rock Bolting, Abisko, pp. 33~46.
23.Ludvig, B. (1983), “Shear Tests on Rock Bolts,” Proc. Int.
Symp. Rock Bolting, Abisko, pp. 113~123.
24.Marence, M. & G. Swoboda (1995), “Numerical Model for Rock
Bolts with Consideration of Rock joint Move-ments,” Rock
Mech. Rock Engng., 28(3), pp. 145~165.
25.Patton, F. D. (1966), “Multiple Model of Shear Failure in
Rock,” Proc. 1st. Int. Conf. ISRM, Lisbon, pp. 509~513.
26.Pellant, C. (1992), Eyewitness Handbooks: Rocks and
Minerals, D.K. Publishing, New York.
27.Wullschlager, D. & O. Natau (1987), “The Bolted Rock-mass
as an Anisotropic Continuum-Material Behaviour and Design
Suggestion for Rock Cavities,” Proc. VI. Int. Conf. ISRM,
Montreal, pp. 1321~1324.
28.Yoshinaka, R. & S. Sakaguchi (1987), “Experimental Study on
The Rock Bolt Reinforcement in Discontinuous Rocks,” Proc.
VI. Int. Conf. ISRM, Montreal, pp. 1329~1332.
29.Zhao, J. (1997), “Joint Surface Matching and Shear Strength
Part A: Joint Matching Coefficient (JMC),” Int. J. Rock
Mech. Min. Sci. & Geotech. Abstr., 34, pp. 173~176.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top