跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/02 21:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐煒德
研究生(外文):Wei-de Shyu
論文名稱:不同濃度及溫度紡液之可紡性及其製備超高分子量聚乙烯纖維延伸性質之探討
論文名稱(外文):Spinning and Drawing Properties of Ultrahigh Molecular Weight Polyethylene Fibers Prepared at Varying Concentrations and Temperatures
指導教授:葉正濤
指導教授(外文):Jen-taut Yeh
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:纖維及高分子工程系
學門:工程學門
學類:紡織工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
中文關鍵詞:溫森堡效應串羊肉結構凝膠纖維凝膠溶液超高分子量聚乙烯
外文關鍵詞:Weissenberg EffectShish-KebabGel FiberGel SolutionUltrahigh Molecular Weight PolyethyleneUHMWPE
相關次數:
  • 被引用被引用:0
  • 點閱點閱:287
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究發現超高分子量聚乙烯(UHMWPE)凝膠溶液的濃度與溫度對其流變與紡絲性能具有深遠的影響。 在相同溫度下,UHMWPE凝膠溶液之剪切黏度隨其濃度增加而明顯增加。 在溫度到達120-140℃間時,UHMWPE凝膠溶液之剪切黏度大幅增加並達到一最大值。 值得注意的是,具可紡性的凝膠溶液其本質上通常具有適當的剪切黏度與均勻之紡液型態。 此外,凝膠溶液的濃度及紡絲溫度亦明顯對紡絲後之初絲的微細構造與延伸性有深遠的影響。 在固定每個紡絲溫度條件下,接近其最適化濃度製備之初絲所具有的可延伸比均較經其他濃度製備之樣品為高,當紡溫到達最適化溫度150℃時,在最適化濃度製備之初絲的臨界延伸比可以達到最大值。 進一步發現,在最適化濃度與溫度製備的初絲均有較順向的Shish-Kebab結構、結晶度、熱學與強力性質。 相似於上述的現象,在最適化條件所製備的初絲經相同延伸比後,其雙折射及強力性質亦較其他條件為高。

The concentrations and temperatures of ultrahigh-molecular-weight polyethylene (UHMWPE) gel solutions exhibited a significant influence on their rheological and spinning properties. The shear viscosities of UHMWPE solutions increased consistently with increasing concentrations at a constant temperature above 80℃. Tremendous high shear viscosities of UHMWPE gel solutions were found as the temperatures reached 120-140℃, at which their shear viscosity values approached the maximum. The spinnable solutions are those gel solutions with optimum shear viscosities and relatively good homogeneity in nature. Moreover, the gel solution concentrations and spinning temperatures exhibited a significant influence on the drawability and microstructure of the as-spun fibers. At each spinning temperature, the achievable draw ratios obtained for as-spun fibers prepared near the optimum concentration are significantly higher than those of as-spun fibers prepared at other concentrations. The critical draw ratio of the as-spun fiber prepared at the optimum concentration approached a maximum value, as the spinning temperature reached the optimum value of 150℃. Further investigations indicated that the best orientation of Shish-Kebab morphology, birefringence, crystallinity, thermal and tensile properties were always accompanied with the as-spun fiber prepared at the optimum concentration and temperature. Similar to those found for the as-spun fibers, the birefringence and tensile properties of the drawn fibers prepared at the optimum condition were always higher than those of drawn fibers prepared at other conditions but stretched to the same draw ratio. Possible mechanisms accounting for these interesting phenomena are proposed.

論文摘要......................................................I
ABSTRACT......................................................II
誌 謝.....................................................III
目 錄......................................................IV
圖表索引......................................................VI
一、前言......................................................1
二、文獻回顧..................................................3
2.1 高分子凝膠...............................................3
2.1.1 高分子凝膠的特性........................................3
2.1.2 分子量對凝膠樣品的影響..................................9
2.1.3 高分子凝膠樣品結晶及熱學性質............................10
2.2 高分子摻混分類及樣品的延伸性質...........................14
2.3 超高強力聚乙烯纖維的發展與製備技術.......................21
三、實驗......................................................23
3.1 原料及樣品製備...........................................23
3.2 凝膠溶液黏度測定..........................................25
3.3 凝膠纖維延伸性能之測定....................................27
3.4 凝膠纖維分子順向度檢測....................................29
3.5 凝膠纖維之抗張強力及模數..................................30
3.6 凝膠纖維熱學性質分析......................................31
3.7 凝膠纖維表面型態觀測......................................32
四、結果與討論................................................33
4.1 UHMWPE凝膠溶液黏度與可紡性質..............................33
4.2 UHMWPE初絲的可延伸性質....................................37
4.3 UHMWPE初絲的表面型態......................................40
4.4 UHMWPE初絲的結晶度與熱學性質..............................44
4.5 UHMWPE初絲的雙折射性質....................................55
4.6 UHMWPE初絲的抗張性質......................................60
五、結論......................................................65
六、參考文獻..................................................67
作 者 簡 介...................................................71

1. A. Zwijnenburg and A. Pennings, Colloid Polym. Sci., 253, 452(1975).
2. P. Smith and P. J. Lemstra, Macromol. Chem., 180, 2983(1979).
3. P. Smith, P. J. Lemstra, J. P. L. Pijpers and A. M. Kiel, Colloid Polym. Sci., 259, 1070(1981).
4. T. Ohta and F. Okada, US Patent 4, 643, 865(1987).
5. T. Ohta, F. Okada, M. Hayashi and M. Mihoichi, Polymer, 30, 2170(1989).
6. K. Furuhata, T. Yokokawa, K. Ohsawa and K. Miyasaka, Polym. Prepr. Jpn., 32, 874(1983).
7. T. Kanamoto, T. Ooki, K. Tanaka and M. Takeda, Polym. Prepr. Jpn., 32, 741(1983).
8. P. Smith, H. D. Chanzy and B. P. Rotzinger, Polym. Commun., 26, 258 (1985).
9. H. D. Chanzy, B. P. Rotzinger and P. Smith, Patent WO-8703288.
10. P. Smith, H. D. Chanzy and B. P. Rotzinger, J. Mater. Sci., 22, 523 (1987).
11. T. Kanamoto, T. Ohama, K. Tanaka, M. Takeda and R. S. Porter, Polymer, 28, 1517(1987).
12. C. Sawatari, T. Okumura and M. Matsuo, Polymer J., 18, 741(1986).
13. D. Darras, R. Sequela and F. Rietsch, J. Polym. Sci., Polym. Phys. Ed., 30, 349(1992).
14. J. T. Yeh, Y. L. Lin and C. C. Fan-Chiang, Macromol. Chem. Phys., 197, 3531(1996).
15. J. T. Yeh and H. C. Wu, Polym. J., 30, 1(1998).
16. J. T. Yeh, S. S. Chang and M. S. Yen, J. Appl. Polym. Sci., 70, 149 (1998).
17. J. T. Yeh and S. S. Chang, J. Mater. Sci., 35, 3227(2000).
18. J. T. Yeh and S. S. Chang, J. Appl. Polym. Sci., in press(2001).
19. Ohta T., Sen-i Gakkaishi, 40, 407(1984).
20. K. Kajiwara and J. E. Mcintyre, Advanced Fiber Spinning Technology, Woodhead Publishing Ltd., Cambridge, Chap. 8, 179(1994).
21. D. DeRossi, K. Kajiwara, Y. Osada and A. Yamauchi, “Polymer Gels” N Y., 23(1990).
22. B. Chung and A.E. Zachariades, “Reversible Polymeric Gels and Related System”, N Y., 22(1986).
23. P. J. Lemstra and R.Kirschbaum, Polymer, 26, 1372(1985).
24. W. W. Graessley and S. F. Edwards, Polymer, 22, 1329(1981).
25. W. W. Graessley, Adv. Polym. Sci., 16, 4(1974).
26. 李亞濱, 合成纖維工業, 15, 38(1992).
27. P. Smith, P.J.Lemstra and H.C.Booy, J. Polym. Sci., Polym. Phys. Ed., 19, 877(1981).
28. W.W. Graessley, Polymer, 21, 258(1980).
29. T. Ogita, C. Sawatari and M.Matsuo, Polym. J., 23, 871(1991).
30. M. B. Rhodes and R. S. Stein, J. Polym. Sci., A-2, 7, 1538(1969).
31. J. M. Lopez and U. W. Gedde, Polymer, 29, 1037(1988).
32. J. M. Lopez, M. T. C. Brana, B. Terselius and U. W. Gedde, Polymer, 29, 1045(1988).
33. B. Banks, J. N. Hay, A. Sharpless and G. Thomson, Nature, 194, 542(1962).
34. J. D. Hoffman, L. J. Frolen, G. S. Ross and J. I. Lauritzen Jr, J. Res. Natl. Bur. Stand. (A) 79A, 671(1977).
35. M. Matsuo and R. S. J. Manley, Macromolecules, 16, 1500(1983).
36. C. Sawatari, and M. Matsuo, Polymer, 30, 1603(1989).
37. O. Yoda and I. Kuriyama, J. Polym. Sci., Polym. Phys. Ed., 15, 773(1977).
38. A. Kaito, K. Nakayama and H. Kanetsuna, J. Appl. Polym. Sci., 28, 1207(1983).
39. N. S. J. A. Gerrits and Y. Tervoort, J. Mater. Sci. 27(1992)1385.
40. N. A. J. M. Van Aerle and A. W. M. Braam, J. Mater. Sci. 23 (1988)4429.
41. D. Darras, R. Sequela and F. Rietsch, J. Polym. Sci., Polym. Phys. Ed. 30, 349(1992).
42. Y. L. Huang and N. Brown, Polymer, 33, 2989(1992).
43. Zwijnegurg and A. J. Pennings, Colloid Polym Sci 254:868,(1976).
44. 丁亦平, 井口正俊, 三橋重信, (日) 通商產業省工業技術研究院、纖維高分子材料研究所研究報告,(1984).
45. Proter R. S. Polym. Eng. Sci., 16, 200(1979).
46. M. M. Zwuck, Amer. Chem. Soc. Polym. Preprint, 7, 184(1966).
47. M. M. Zwuck, Appl. Polym. Symp, 6, 109(1967).
48. P. Smith, J. Smook, A. J. Pennings, Polym. Bull., 1, 773(1979).
49. J. Brandrup, E. H. Immergut and E. A. Grulke, Polymer Handbook, 4th ed., Wiely, N Y., Section Ⅵ p. 8(1999).
50. A. J. Pennings and J. Torfs, Colloid Polym. Sci., 257, 547(1979).
51. P. Smith and P. Lemstra, J. Mater. Sci., 15, 505(1980).
52. T. Ohta, Polym. Eng. Sci., 23, 697(1983).
53. W. Hoogsteen, G. ten Brinke and A. Pennings, Colloid Polym. Sci., 266, 1003(1988).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top