(3.235.108.188) 您好!臺灣時間:2021/02/25 07:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃佩傑
論文名稱:有機荷電薄膜的胺基酸輸送現象之研究
論文名稱(外文):Study of amino acids transportation through an organic charged membrane
指導教授:洪伯達
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:纖維及高分子工程系
學門:工程學門
學類:紡織工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
中文關鍵詞:化學滲透學說氨基酸陽離子交換薄膜
外文關鍵詞:NafionNernst-Planck fluxChemiosmotic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:140
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以探討氨基酸通過陽離子交換薄膜(cation-exchange membranes)的機理為目的,使用Nafion陽離子交換薄膜為材料進行實驗,因它可以選擇性地只通透陽離子,同時阻礙陰離子的通過。由於氨基酸本身的性質,可以調整溶液的pH值來改變氨基酸所帶電荷,當溶液之pH值低於氨基酸之等電點時,氨基酸則由中性慢慢轉為帶正電荷而通過陽離子交換薄膜。本實驗是利用一系列的實驗設計探討溶液pH值對氨基酸的通透藉以了解其輸送機制。由實驗結果可初步證明氨基酸通過陽離子交換薄膜機制之理論模型可以利用Nernst-Planck flux equation來解釋帶有正電荷氨基酸在整體系統中的輸送。另外發生質子化反應及去質子化反應和Michaelis-Menten equation 、化學滲透學說(The Chemiosmotic Theory)及膜相飽和理論(Membrane Saturation Theory )可以解釋在膜界面及膜內之氨基酸輸送行為。一方面實驗結果也指示出氨基酸通過陽離子交換薄膜之輸送速率強烈依賴於外界溶液pH值。這是因為外界溶液pH值直接影響氨基酸進入及離開膜相之速率;而輸送速率決定步驟(Transport rate-limiting step)發生於氨基酸離開膜的一側。這樣的結果對於以大量帶正電荷之氨基酸形式存在之溶液中以及在膜內高度飽和(saturation)時,卻無法提高氨基酸之輸送速率做一個較合理的解釋

In this study, the mechanisms in the permeation of amino acids through a cation-exchanged membrane (Nafion 117) were discussed. The transportation behavior is much dependent on the pH value of the solution and the flux is relatively large below the isoelectric point of the amino acid used. Therefore, a series experiments were set up to elucidate the effects of pH values for amino acid aqueous solutions on the interfacial transportation behavior of Alanine through a H+-membrane. On the other hand, the experimental results could be explained qualitatively by using a theoretical model which incorporates the equilibrium dissociation equations for the various fractions of amino acid form at different pH values. Then the rate equation based on the interfacial chemical reaction was applied to discussed the membrane interfacial transport, and the Nernst-Planck flux equation could explained the ion transport through the bulk of the membrane, respectively. The results indicate that the rate-limiting step in the transport process of amino acid was determined where alanine left from the membrane side. This fact may provide a better understanding for the permeation of amino acid through charged membranes. Finally, the Chemiosmotic theory, Michaelis-Menten equation and membrane saturation theory were used as well to elucidate the transportation behavior in higher concentration of charged amino acid through a H+ membrane in detail.

摘要I
第1章簡介1
第2章理論背景4
2.1. 固定電荷不均勻薄膜4
2.2. Donnan 平衡5
2.3. 溶解及擴散理論:10
2.4. Henderson假設:11
2.5. 局部電中性假設:12
2.6. 化學滲透學說(The Chemiosmotic Theory)及協同式輸送(Co-transport):13
2.7. 擴散透析:13
2.8. 膜電位:18
2.9. 氨基酸的性質:22
2.10. Michaelis-Menten 方程式:22
第3章實驗:25
3.1實驗材料:25
3.2.實驗儀器:26
3.3實驗裝置:27
3.4實驗步驟:29
第4章實驗數據之計算:32
第5章結果討論:42
5.1 在低Ala濃度及低pH值下:42
5.2高濃度Ala及略高的pH值:49
參考文獻60

1.beaaton, N.C., Cooper(Ed.), Ultrafiltration Membranes and Applications,Polym. Sci. techn., 13(1980)373
2.Lehninger, A.L., Biochemistry, Worth Publishers Inc., New York, 1976
3.Voet, D., and Voet, JG., “Biochemistry.” Wiley, New York, 1990.
4.Jonsson, G., ‘Dialysis’, in ref. 2,p.625
5.Moonen, H., and Niefind, N.j., Desalination, 41(1982) 327
6.Mathews, C.K., and van Holde, K.E., “Biochemistry.” Benjamin/cummings,Redwood City, CA, 1990.
7.Sikdar, S.K., J. Membrane Sci. 28, 311 (1986).
8.Gugla, P.G., and Dindi, H., J. Membrane Sci. 24, 59 (1985).
9.Martinez, D., Sandeaux, R., Sandeaux, J., and Gavach, C., J. Membrane Sci. 69, 273 (1992).
10.Lee, K., and Hong, J., J. Membrane Sci. 75, 107(1992).
11.Alhaique, F., Memoli, A., Santucci, E., and Olana, F., J. Membrane Sci. 45, 55 (1989).
12.Yoshikawa, M., Suzuki, M., Sanui, k., and Ogata, N., J. Membrane sci. 32, 235 (1987).
13.Uglga, C.V., and Zanoaga, C.V., J. Membrane Sci. 65, 47 (1992).
14.Chan, C.C., and Wang, S., J. Membrane Sci. 76, 219 (1993).
15.Frromter, E., in “Biophysics.” Springer-Verlag, Berlin, 1983.
16.Buck, R. P., J. Membrane Sci. 17, 1 (1984).
17.Eisenberg, R. S., J. Membrane Biol. 150, 1 (1996).
18.M. Yoshikawa, H. Ogata, K. Sanui and N. Ogata, Active and aelective transports of anions through poly(N-propenoyl-9-acridinylpyridine-co-acrylonitrile)membrane, Polym. J., 15 (1983) 609.
19.Y. Imashiro, H. Yokoi, M. Yoshikawa, K. Sanui and n.Ogata, Active and selective transport of anions through membranes of vinylpyridine-styrene copolymers, Nippon Kagaku Kaishi, (1983) 875.
20.H.J. Chum, A.K. Hauser and D. Sopher, New Uses of Nafion membranes in electroorganic sythesis and in organic acid separations, J. Electrochem. Soc., 130 (1983)2508.
21.S. K. Sikdar, Transport of organic acids through perfluorosulfonate polymer membranes, j. Membrane Sci., 23 (1985) 83.
22.Teorell, T., Proc. Soc. Exp. Biol. Med., 33 (1935) 282
23.Meyer, K.H., and Sievers, J-F., Helu. Chim. Acta, 19 (1936) 649
24.Buck, R.P.; J. Membrane Sci. 1984, 17, 1.
25.Larter, R., J. Membrane Sci. 1986, 28, 165.
26.Steinmetz, C. G., Larter, R., J. Phys. Chem. 1988, 92, 6133.
27.Lakshminarayanaiah, N., Transport phenomena jn membranes, Academic Press, Orlando, USA,. 1969
28.Helfferich, F., Ion-exchange, McGraw-Hill, New York, 1962
29.Minagawa, M., Tanioka, A., Ramirez, P., and Mafe, S., J. Colloid Interface Sci. 188, 176 (1997).
30.Nakagak, M.,Takagi, R., J. Membrane Sci. 1985, 23, 29.
31.Nakagak, M.,Takagi, R., J. Membrane Sci. 1990, 53, 19.
32.Lakshminanaiah, N., Equations of Membrane Biophyiscs,Academic Press:New York 1984.
33.Donnan, F. G., Chem. Rev. 1925, 1, 72.
34.Murphy, W.D., Manzanares, J.A., Mafe, S., Reiss, H., J. Phys. Chem. 1992, 96, 9983.
35.Yoshikawa, M., Suzuki, M., Sanui, K., and Ogata, N., J. Membrane Sci. 32, 235 (1987).
36.R.S. Yeo, ion clustering and proton transport in Nafion membranes and it’s application as solid polymer electrolyte, J. Electrochem. Soc., 130(3) (1983) 533-538.
37.M. Nakagaki, K. Miyata, Membrane potential and permeability coefficient of cellulose membrane, Yakugaku Zasshi 93 (1973) 1105.
38.M. Nakagaki, R. Takagi, Experimental verification of the theory of membrane potential for collodion membranes with asymmetric charge distribution, Chem. Pharm. Bull. 34 (1986) 957.
39.Longworth, R; Vaughan, D.J., Nature, 1968, 218, 85.
40.Reiss, H., Bassignana, I.C., J. Membrane Sci. 1982, 11, 219.
41.Selvey, C., Reiss, H., J.Membrane Sci. 1985, 23,11.
42.Manzanares, J,A., Mafe, S., Pellicer, J., J. Phys. Chem. 1991, 95, 5620.
43.Manzanares, J,A., Mafe, S., Pellicer, J., J. Faraday Trans. 1992, 88, 2355.
44.Yeo, S. C., Eisenberg, A., J. Appl. Polym. Sci. 1979, 21, 875.
45.Leddy, J., Vanderborgh, N. E., J. Electeroanal. Chem. 1987, 235, 299.
46.Eisenbrg, A., Macromolecules. 1970, 3, 147.
47.Hsu, W.Y., Barkley, J.R., Meakin, P., Macromolecules. 1980, 13, 198.
48.Crank, J., The mathematics of diffusion, Clarendon Press, Oxford, 1975.
49.Helfferich, F. “Ion Exchange,” McGraw-Hill, New York, 1962.
50.Minagawa, M. and Tanioka, A., J. Colloid and Interface sci., 202, 149 (1998).
51.Sikdar, S. K., J. Membrane Sci., 24, 59 (1985).
52.Lee, K., Hong, J., J. Membrane Sci., 75, 107 (1992).
53.Mulder, M. “Basic Principles of Membrane Technology(second edition),” Kluwer Academic Publishers, 1996.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔