# 臺灣博碩士論文加值系統

(3.238.125.76) 您好！臺灣時間：2022/06/29 12:06

:::

### 詳目顯示

:
 Twitter

• 被引用:1
• 點閱:213
• 評分:
• 下載:0
• 書目收藏:0
 本研究以現有的疊層I型複材樑之分析為基礎，依據複材樑理論與複材積層板理論，進一步分析疊層T型複材樑。理論公式的推導將T型複材樑假設為一維或二維之結構，一維之分析在Kirchoff-Love之變形假設下只考慮軸向之應變，導出應變─位移之關係；二維之分析將T型樑視為二片複材薄板之組合。經由應力─應變與力矩─曲率間的關係，推導樑的有效剛性，之後，樑的撓度與各個疊層的應力也可算出。 本研究之有限元素分析軟體為MSC/NASTRAN，取一材料為AS4/3501-6 carbon/epoxy，長20 in，翼緣寬為0.5 in，腹板高為0.75in，對稱翼緣疊層為 ，非對稱翼緣疊層為 ，腹板疊層為 之T型樑與I型樑，疊層厚度皆為0.0052 in，受一分佈負載之簡支樑。經有限元素分析比較後，本研究討論結果如下： 1.理論公式的精確度與其使用的限制，經由有限元素分析得以獲 得驗證。 2.I型樑之有限元素分析，取1200 element/in以上時；T型樑之有 限元素分析，取800 element/in以上時，分析值會趨近於一收斂值。 3.隨複材樑長度/高度比值在15以上，理論值的精確度亦增高。 因此，所推導的公式較適用於細、長型樑。 4.以一維與二維的觀點分析疊層T型複材樑，並推導對稱與非對 稱T型樑之形心位置。由於一維理論分析在推導過程中以只樑理論為基礎，假設中只考慮軸向應變 ，以至於誤差較大。 5.0度疊層承受大部分彎曲應力，因此在不改變材料的情況下，將 0度疊層移至翼緣最外層；或著增加0度疊層，皆能增加樑的彎曲剛性。
 Based on the analysis of the laminated I beam, the laminated T beam has been analyzed by using composite beam theory and lamination theory. One-dimensional and two-dimensional approaches are applied to derive the theoretical formulas of the bending stiffness and the bending stress of the laminated T beam. Under the Kirchoff-Love deformation assumption, the one-dimensional approach only considers the uniaxial strain, while the two-dimensional approach takes into account 2-D plane stress state. Furthermore, the laminated T beam has been treated as the combination of two thin laminate plates of the web and the flange for the two-dimensional approach. Then, the neutral axis is determined by the condition of the zero axial force and the effective stiffness can be deduced from the moment-curvature relation. Finally, the stress and strain in each ply can be calculated. The MSC/NASTRAN for window is applied to perform the finite element analysis. The AS4/3501-6 carbon/epoxy I and T beam with a length of 20in and the web height of 0.75in as well as the flange width of 0.5in are simply supported and subjected to a uniformly distributed load. Two cases of the symmetric flange lay-up of and the nonsymmetric flange lay-up of with the web layup of are used for case studies. The comparisons of the theoretical and FEM results have shown that: 1.The accuracy of and the limitation of the usage of the theoretical formulas have been verified by the finite element analysis. 2.FEA results will convergence as I beam elements greater than 1200 elements/in, while T beam elements greater than 800 elements/in. 3.As the aspect ratio (length/height) is greater than 15, the formulas can provide the acceptable accuracy. 4.As the one-dimensional approach only considers the uniaxial strain, the accuracy of the one-dimensional approach is much less than the two-dimensional approach as compared to the FEM results. 5.Because 0°plies sustain most bending stress and placing them to the outer surface of the flange, the bending stiffness will increase without changing materials.
 摘要I ABSTRACTIII 圖 目 錄V 表 目 錄VIII 第一章序論1 1前言1 1-1文獻回顧2 1-2研究方法與目的4 第二章疊層I型複材樑之理論分析6 2推導步驟6 2-1對稱疊層I型複材樑理論分析7 2-1-1腹板(WEB)9 2-1-2窄翼緣(NARROW FLANGE)11 2-1-3寬翼緣(WIDE FLANGE)12 2-2非對稱I型複材樑理論分析13 2-2-1窄翼緣13 2-2-2寬翼緣14 第三章疊層T型複材樑之理論分析17 3理論分析流程圖17 3-1一維理論分析19 3-1-1位移與應變的關係19 3-1-2應力與應變的關係與形心推導20 3-2二維理論分析23 3-2-1形心推導23 3-2-1-1對稱疊層T型複材樑形心位置23 3-2-1-1-1窄翼緣23 3-2-1-1-2寬翼緣24 3-2-1-2非對稱疊層T型複材樑形心位置25 3-2-1-2-1窄翼緣25 3-2-1-2-2寬翼緣27 3-2-2對稱疊層T型複材樑理論分析29 3-2-2-1窄翼緣29 3-2-2-2寬翼緣30 3-2-3非對稱T型複材樑理論分析31 3-2-3-1窄翼緣31 3-2-3-2寬翼緣32 第四章有限元素分析35 4引言35 4-1有限元素分析法簡介35 4-2疊層複合材料樑之有限元素模型建立37 4-3NASTRAN之設定41 4-4範例一43 4-5範例二46 4-6範例三48 第五章數據分析與結構最佳化設計51 551 5-1數據判讀51 5-1-1疊層I型樑51 5-1-2疊層T型樑54 5-1-3結果與討論64 5-2結構與疊層最佳化設計65 5-2-1範例四65 5-2-2範例五68 第六章結論69
 1.Stephen R. Swanson, “Advanced Composite Material,” Prentice Hall, 19972.A. C. Ugural, “Mechanics of Materials,” McGRAW-HILL, 19913.Charles E. Knight, “The Finite Element Method in Mechanical Design,” PWS-KENT, pp. 65-80.4.Leif A. Carlsson & R. Byron Pipes, “Experimental Characterization of Advanced Composite Materials,” PRENTICE-HALL, INC., Englewood Cliffs, New Jersey 07632.5.Bank, L. C., “Modification to Beam Theory for Bending and Twisting of Open-Section Composite Beams,” Composite Structure. 15 (1990): 93-144.6.Bank, L. C., “Shear Coefficients for Thin-Walled Composite Beams,” Composite Structure. 8 (1987):47-617.L. C. Bank & P. J. Bednarczyk, “A Beam Theory for Thin-walled Composite Beams,” Composite Structure and Technology 32 (1988):265-2778.Ramesh Chandra & Inderjit Chopra, “Experimental and Theoretical Analysis of Composite I-Beams with Elastic Couplings,” Proceedings of the 32th AIAA/ASME/ASCE/ASC Structures, Structural Dynamics and Materials Conference. AIAA, Washington, DC, April 1991.9.Rehfield, L. W., and A.R. Atilgan, “Shear Center and Elastic Axis and Their Usefulness for Composite Thin-Walled Beams,” in Proceeding of the American Society for Composites, Fourth Technical Conference , pp.179-188.10.Cowper, G. R., “The Shear Coefficient in Timoshenko’s Beam Theory,” J. Appl. Mech., 33 (1996) 335-34011.O. A. Bauchau and C. H. Hong, “Large Displacement Analysis of Naturally Curved and Twisted Composite Beams,” AIAA Journal Vol.25, No. 11, November 198712.Ramesh Chandra, Alan D. Stemple, and Inderjit Chopra, “Thin-Walled Composite Beam Under Bending, Torsional, and Extensional Loads13.R. S. Thomson, P. J. Falzon, A. Nicolaidis, K. H. Leong,and T. Ishikawa, “The Bending Properties of Integrally Woven and Unidirectional Prepreg T-sections,” Composite Structures 47 (1999) 781-78714.S. Nagarajan, “Finite Element Model for Orthotropic Beams,” Computers & Structures Vol. 20, No.1-3, pp.443-449, 198515.Rehfield. L. W., Atilgan, A. R., and Hodges, D. H., “Nonclassical Behavior of Thin-Walled Composite Beams with Closed Cross Sections,” Journal of the American Helicopter society, Vol. 35, No.2, 1990, pp. 42-50.16.Bauchau. O. A., “A Beam Theory for Anisotropic Materials,” Transactions of the American Society of Mechanical Engineers, Journal of Applied Mechanics, Vol. 52, June 1985, pp. 416-422.17.Kosmatka. J. B., “Extension, Bending and Torsion of Anisotropic Beams with Initial Twist,” Proceedings of the 30th AIAA/ASME/ASCE/ASC Structures, Structural Dynamics and Materials Conference. AIAA, Washington, DC, April 1989.18.Mingutet, P., and Dugundji, J., “Experiments and Analysis for Composite Blades Under Large Deflections: Part 1. Static Behavior,” AIAA Journal, Vol. 28, No. 9, 1990, pp. 1573-1579.19.Stemple, A. D., and Lee, S. W.,”A Finite Element Model for Composite Beams with Arbitrary Cross Sectional Warping,” AIAA Journal, Vol. 26, No.12, 1988, pp.1512-1520.20.Kosmatka, J. B., and Friedmann, P. P., “Structural Dynamic Modeling of Advanced Composite Propellers by the Finite Element Method,” Proceedings of the 28th AIAA/ASME/ASCE/ASC Structures, Structural Dynamics and Materials Conference. AIAA, Washington, DC, April 1989.21.Bauchau, O. A., and Hong, C. H., “Finite Element Approach to Rotor Blade Modeling,” Journal of the American Helicopter Society, Vol.32, No. 1, 1987, pp. 60-67.22.Hong, C. H., and Chopra, I., “Aeroelastic Stability Analysis of a Composite Bearingless Rotor Blade, “Journal of the American Helicopter Society, Vol.31 No. 4, 1986, pp. 29-35.23.Rehfield, L. W., and Atilgan, A. R., “On the Buckling Behavior of Thin Walled Laminated Composite Open Section Beams,” Proceedings of the 30th AIAA/ASME/ASCE/ASC Structures, Structural Dynamics and Materials Conference. AIAA, Washington, DC, April 1989.24.Vlasov, V. Z., Thin-Walled Elastic Beams, translated from Russian, 1961, National Science Foundation and Department of Commerce, USA, 1961.25.Gjelsvik, A., The Theory of Thin-Walled Bars, Wiley, New York 1981.26.Bauld, N. R., Jr., and Tzeng, L. S., “A Vlasov Theory for Fiber Reinforced Beams with Thin-Walled Open Cross-Sections,” International Journal of Solids and Structures, Vol. 20, No. 3, 1984, pp. 277-297.27.Yang, P. C., Norris, C. H., and Stavsky, Y., “Elastic Wave Propagation in Heterogeneous Plates,” International Journal of Solid Structures, Vol. 2, 1966, pp. 665-684.28.Faramarz Gordaninejad, “Bending of Thick Angle-Ply Bimodular Composite Plates,” AIAA Journal Vol.28, No.11, November 1990, pp.2005-2009.29.Pierre Minguet and John Dugundji, “Experiment and Analysis for Composite Blades Under Large Deflections Part 1: Static Behavior,” AIAA Journal Vol.28, No.9, September 1990, pp.1573-1579.30.MSC/NASTRAN Application Manual31.MSC/NASTRAN Linear Static Analysis User’s Guide32.MSC/NASTRAN Nonlinear Static Analysis User’s Guide33.陳正宗、林信立、邱垂鈺、全湘偉、黃志勇、韓文仁、秦無忝, “有限元素分析與工程實例-MSC/NASTRAN 軟體應用,” 北門出版社。34.黃正中、林啟豪、謝忠祐, “NASTRAN 電腦輔助工程分析”, 全華出版社, pp. 4-63 ~ 4-72.35.蘇品書、賴耿陽, “複合材料科學,” 復漢出版社, pp. 126-149.36.劉亞忠、陳時錦、王新榮, “有限元素法及其應用,” 中央圖書出版社。37.李錟峰, “電腦輔助工程應用─有限元素分析,” 新科技出版社38.江毅成、洪宗彬, “I型複材樑之有限元素分析,”第十七屆中國機械工程學會全國學術研討會39.江毅成、歐廣順, “非對稱L型複材樑之應力分析”第二十四屆全國力學年會
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 銲接殘留應力與時域反射儀(TDR)非破壞檢測之探討 2 不同尺寸微懸臂樑製程最佳化暨載重與撓度 關係之研究 3 函數板逆運算問題之研究

 無相關期刊

 1 微脈衝式Nd:YAG雷射銲接之銲域及殘留應力分佈之研究 2 反向高電子遷移率電晶體之雜訊特性分析 3 水系氧化鋁懸浮液之酸鹼度對沉降、流變行為與電泳披覆影響之研究 4 利用sol-gel（溶膠-凝膠法）製作矽質薄膜之研究 5 金屬鎳粉之氧化與其懸浮體流變行為之研究 6 奈米Nylon6/ABS合膠之製備與機械性質探討 7 共晶蓄冷材料之熱分析與蓄冷性能應用之研究 8 燃料鋅空氣電池之機械抽換式陽極腐蝕與電化學性質研究 9 二氧化鈦光觸媒之製備及分解室內揮發性有機物質之研究 10 以電漿濺鍍技術製備太陽能選擇性吸收膜之研究 11 溫濕度對建材揮發性有機氣體逸散模式之研究 12 連接器的線纜材料、接觸形狀及焊接方法在高頻下之差動訊號的影響 13 聚甲基丙烯酸甲酯/蒙脫土奈米級複合材料之合成與性質探討 14 玻璃纖維強化杜塞型聚胺基甲酸酯改質乙烯酯樹脂拉擠成型複合材料之研究 15 聚丙烯纖維經乙烯基單體接枝改質之研究

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室