(3.237.97.64) 您好!臺灣時間:2021/03/03 01:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃鈺惠
論文名稱:二氧化鈦光觸媒之製備及分解室內揮發性有機物質之研究
指導教授:陶惟翰陶惟翰引用關係
學位類別:碩士
校院名稱:中國文化大學
系所名稱:材料科學與製造研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:92
中文關鍵詞:光觸媒銳鈦礦紫外光揮發性有機氣體二氧化鈦
外文關鍵詞:photocatalyticanataseUV lightVOCsTiO2
相關次數:
  • 被引用被引用:5
  • 點閱點閱:351
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗主要研究為二氧化鈦光觸媒之製作,及其對空氣中揮發性有機氣體之去除。
二氧化鈦光觸媒的製作方面主要由溶膠-凝膠法,以化學合成的方式製作光觸媒溶膠再將其經高溫鍛燒而得,其中選擇以鹽酸及硝酸作為解膠劑。所製成的二氧化鈦晶體以X-光繞射分析判斷是否結晶成所需的銳鈦礦晶形。當以150℃燒結時,已有部分波峰出現但不明顯,以300℃燒結時,anatase phase 的三個較強繞射峰(2θ=25.4、48.2、37.9度)清楚可見,至500℃鍛燒時,除anatase phase出現外,尚有rutile phase的波峰出現,可見此時已有相變化產生。
而為因應基材的耐高溫性,本實驗尚加入SiO2作為黏著劑,並以UV吸收光譜測知其對TiO2的吸收波長的影響,當以商用P25的二氧化鈦之UV吸收光譜(345nm)作為比較,發現僅有少量移轉,可見二氧化矽對二氧化鈦的受光分解有機物的影響有限。
光觸媒之VOC(有機揮發性氣體)去除測試中,對VOC之去除方面,初步結果乙醇的分解效果最好,甲苯次之,異丙醇再次之。以鹽酸作為解離劑較硝酸所製成的二氧化鈦,在500℃鍛燒溫度下,在針對乙醇的分解中,有高於三倍的分解能力。
The present thesis is dedicated to the study of the titanium dioxide photocatalytic material and photochemical process in view of indoor air purification.
Nanostructured titanium dioxide was employed as the photocatalyst for degradation of volatile organic compounds (VOCs). Titania sol can be prepared by chemical synthesis via sol-gel process, and formation of either an anatase or a rutile phase crystalline is respected to the annealing temperature. An amorphous surface obtained at 150℃ heat treatment, following the increase of temperature therefore at the temperature of 300℃ anatase phase appeared at 2θ=25.5, 48.2, 37.9 degree under the X-ray diffraction pattern investigation, at the temperature of 500℃ annealing therefore resulting both of anatase and rutile phases of crystalline implying evolution of the anatase to the rutile phase.
To enlarge the application of titanium dioxide photocatalyst therefore the formation of crystalline at low temperatures is expected. An inorganic silicon oxide SiO2 which is chemical stability to the TiO2 photocatalyst, the it can be employed as the adhesion binder between a target and the TiO2 photocatalyst resulting thin films formation at the room temperature. Both titanium dioxide photocatalyst and TiO2-SiO2 hybrid particles were carefully examined by using UV-VIS spectroscopy, the action absorption spectrum remained almost the same resulting the threshold energy for TiO2 photocatalyst was not influenced.
Photocatalytic degradation experiments were investigated by using three frequent appeared indoor VOCs such as ethanol, toluene and isopropyl alcohol. The degradation rate was calculated following the mechanism of Langmuir isotherm where the rate constant represented as the ease of degradation process, comparison of these VOCs in this experiment where ethanol was the fastest then toluene and isopropyl alcohol was the last. In addition, the TiO2 photocatalyst prepared by using hydrochloric acid as degelatification agent and annealed at 500℃ showed a significant photodegradation rate constant, it is three times faster, in the case of using ethanol as the reactant.
目錄1
圖目錄4
表目錄6
謝 誌7
摘 要8
Abstract9
第一章 緒論11
1.1研究動機11
1.2研究目的12
1.3研究流程13
第二章 文獻回顧14
2.1 揮發性有機化合物(VOCs)之定義14
2.2 VOCs對人體之影響17
2.3 光觸媒之發展21
2.3.1全球整體發展21
2.3.2各國發展情形23
2.4光觸媒之選擇25
2.5光觸媒原理31
2.6光觸媒分解VOCs之文獻34
2.6.1甲苯34
2.6.2苯35
2.6.3二甲苯35
2.6.4丙酮35
2.6.5甲醛36
2.6.61-丁烯36
2.6.7 其他36
2.7光觸媒之製備36
2.7.1溶膠凝膠法(Sol-Gel)36
2.7.2 化學氣相沉積法(CVD)37
2.7.3 其他38
第三章研究方法39
3.1實驗設備39
3.1.1 採樣和分析裝置39
3.1.2有機分析儀器49
3.2實驗儀器及藥品51
3.2.1實驗儀器51
3.2.2實驗藥品52
3.2.3實驗儀器之操作條件52
3.3實驗流程與測試方法54
3.3.1 光觸媒級TiO2之製造54
3.3.2揮發性有機化合物之測試流程56
第四章 實驗結果與討論58
4.1 二氧化鈦性質測定58
4.1.1 X-光繞射58
4.1.2 比孔表面積 ( BET )64
4.1.3 UV-吸收光譜65
4.2 檢量線之製作69
4.2.1 檢量線之製作方法69
4.2.2 結果69
4.3 VOCs分解測定74
4.4 乙醇分解測定78
4.4.1 燒結溫度之影響78
4.4.2 解膠劑之影響81
第五章 結論84
第六章 參考文獻85
1.李芝珊,“室內空氣品質與辦公大樓病態建築物症候群相關性質探討”,生命科學簡訊,第13卷2期,88年2月。
2.“Materials progress: Heat treating/coating,”Advanced Materials & Process, Vol. 151 Issue 5, p10, 2p, 1c.
3.郭俊良,“塗料製造業揮發性有機物類(VOC)減量及逸散防制”,塗料與塗裝技術。
4.楊廣苓、羅俊光,“氣態有機污染物自動採樣分析儀”,科儀新知第十八卷四期,86年2月。
5.鍾美華、黃思篿、張淑芬,“有機性有害空氣污染物列管名單篩選方法之探討”,第十屆空氣污染控制技術研討會論文集,p.193-200,1993。
6.Mo1have, L., Moller, J., “The atmospheric environment in modern Danish dwellings-measurements in 39 flats”, Indoor climate, (eds) P.O. Fanger, O. Valbjorn, Danish Building Research Institute, Horsholm, Denmark, p.171-186, 1978.
7.Johansson, I. “Determination of organic compounds in indoor air with potential reference to air quality”, Atmospheric Environment, 12, 1371-1377, 1978.
8.Seifert, B. and Abraham, H.J. “Indoor air concentrations of benzene and some other aromatic hydrocarbons”, Ecotoxicology and Environmental Safety, 6,190-192, 1982.
9.Sheldon L. S., et al. “Indoor Air Quality in Public Buildings, vol 1.1:Project Summy ”, Washington, D.C.:U.S. EPA. Publication no.EPA/600/S6-88/009a,1988.
10.Seifert B. “Organic Indoor Pollutants:Sources, Species, and Concentrations”, In:Chemical and Environmental Science Volume 4:Chemical, Microbiological, Health and Comfort Aspects of Indoor Air Quality-State of the Art in SBS, Ed. Knoppel H. and Wolkoff . p.25-36.
11.“固體吸附技術於工業空調除濕淨化之應用”,中國冷凍空調雜誌,p.65,1996年6月。
12.Molhave, L. “Volatile organic compounds, indoor air quality and health”, Indoor Air, 1(4), 357-376, 1991.
13.王湘卿,“簡介病態建築物症候群”,環保科技通訊,第6卷第6期,83年5月。
14.Stolwilk, J.A.J. “Sick Building Syndrome”. In(B. Berglund, T. Lindvall & J. Sundell, eds.)Indoor Air, Volume 1:”Recent Advances in the Health Sciences and Technology. Stockholm:Swedish Council for Building Research”. P.23-29, 1984.
15.Leaderer B, Wilcox T, Fidler A, Seifridge J, Hurrel J, Kollanander M:“Protocol for a Comprehensive Investigation of Building Related Complaints”. Proceedings Indoor Air ’90, Canada Mortgage and Housing Corporation, Ottwa, 4:609-614, 1990.
16.WHO:Indoor Air Pollutants:Exposure and Health Effects. WHO Regional Office for Europe, Copenhagen, Denmark. EURO Reports and Studies 78:1-35, 1983.
17.Lindvall T. “The Sick Building Syndrome-Overview and Frontiers. Chemical, Microbiological, Health and Comfort Aspects of Indoor Air Quality-State of the Art in SBS”.(Knoppel H, Wolkoff Peds.), Kluwer Academic Publishers, The Netherlands, 1st ed.:1-14, 1992.
18.Woods J.E., Drewry G.M., & Morey P. R. “Office Worker Perceptions of Indoor Air Quality Effects on Discomfort and Performance”. Proceedings of the 4st International Conference on Indoor Air Quality and Climate. Seifert B., Esdorn H., Fischer M., Ruden H. & Wegner J. eds., Vol 2. Institute for Water, Soil and Air Hygiene, Berlin:464-468, 1987.
19.Wold Health Organization. “Air Quality Guidelines for Europe”, WHO Regional Publications, European Series. No.31, 1988.
20.Jacoby, A. W., Blake, D. M., Fennell J. A., Boulter, J. E., and Vargo, L. M.. “Heterogeneous Photocatalysis for Control of Volatile Organic Compounds in Indoor Air”, The 88th Air & Waste Management Association, 46, p891~898, 1996.
21.F. Möllers, H. J. Tolle and R. Memming. “On the origin of the photocatalytic deposition of noble metals on TiO2, ” Journal of the electrochemical society Vol 121, No. 9, p1160-1167, 1974.
22.盧明俊,“毒性化學物質經二氧化鈦催化之光氧化反應”,博士論文,國立交通大學土木工程研究所,1993。
23.田中義身,光觸媒技術研討會,經濟部,2000/7/13。
24.M. Schiavello, “Heterogeneous Photocatalysis,” Willey, p103-117, 1997.
25.M. Bekbolet, Wat. Sci. Tech. 35:11-12 p95-100, 1997.
26.K. Sunada, Y. Kikuchi, K. Hashimoto, and A. Fujishima, Environmental Science & Technology 32:5 p726-728, 1998.
27.H Sakai, R-X Cai, Ryo Baba, K Hashimoto, Y Kubota and Akira Fujishima, Photocatalyst Purification and Treatment of Water and Air, p651~657, 1993.
28.Hoffmann, M. R., Martin, S. T., Choi, W., and Bahnemann, D. W., Chem. Rev., 20:p69~95, 1995.
29.Obee T. N. et al, “TiO2 Photocatalysis for Indoor Air Applications: Effect of Humidity and Trace Contaminant Levels on Oxidation Rates of Formadehyde, Toluene, and 1,3-Butadiene, ” Environ, Sci. Technol., Vol. 29, p1223.
30.Ibusuki, T. et al, “Toluene Oxidation on UV-Irradited Titanium Dioxide With and Without O2, NO2, or H2O at Ambient Temperature, ” atoms Envir., Vol. 20, No. 9, p1711.
31.Gratson, D. A. et al “Photocatalytic Oxidation of Gas-Phase Btex-Contaminated Waste Streams,” A & WMA 88th Annual Meeting & Exhibition June.
32.Ollis, D. F. et al, “Heterogeneous Photocatalytic Oxidation of Gas-Phase Organics for Air Purification: Acetone, 1-Butanol, Butyraldehyde, Formaldehyde, and m-Xylene Oxidation, ” J. Catal., Vol. 136, p554.
33.Raupp, G. B. et al, “Photocatalytic Oxidation of Oxygenated Air Toxics, ” Appl. Sur. Sci., Vol. 72, p321.
34.Ollis, D. F. et al, “Acetone Oxidation in a Photocatalytic Monolith Reactor, ” J. Catal., Vol. 149, p81.
35.Linxin Cao et al, “Gas-Phase Oxidation of 1-Butene Using Nanoscale TiO2 Photocatalysts, ” J. Catal., Vol.188, p48-57.
36.工業材料147期p78 88年3月
37.許炎和、方樹輝,“基礎氣相色層分析”,國興出版社(民國73年8月)。
38.X. Fu, L. A. Clark,Q. Yang, and M. A. Anderson, Environ. Sci. Technol. 30:p647-653, 1996.
39.M. Machida, K. Norimoto, T. Watanabe, Jurnal of Materials Science, 34:p2569-2574, 1999.
40.Yang Luo, David F. Ollis, “Heterogeneous photocatalytic oxidation of trichloroethylene and toluene mixtures in air: kinetic promotion and inhibition, time-dependent catalyst activity, ” J. Catal., Vol. 163, No. 1, p1-11.
41.J. Blanco, P. Avila, A. Bahamonde, E. Alvarez, B. Sanchez, M. Romero, “Photocatalytic destruction of toluene and xylene at gas phase titania based monolithic catalyst, ” Catalysis Today, Vol. 29, p437-442, 1996.
42.Vincenzo Augugliaro, Salvatore Coluccia, Vittorio Loddo, Leonardo Marchese, Gianmario Martrra, Leonardo Palmisano, Mario Schiavello, “ Photocatalytic oxidation of gaseous toluene on anatase TiO2 catalyst: mechanistic aspects and FT-IR investigation,” Applied Catalysis B: Environmental, Vol. 20, p15-27, 1999.
43.Olga d''Hennezel, Pierre Pichat, David F. Ollis, “Benzene and toluene gas-phase photocatalytic degradation over H2O and pretreated TiO2: by-products and mechanisms,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 118, p197-204, 1998.
44.Yang Luo et al, “Heterogeneous photocatalytic oxidation of trichloroethylene and toluene mixtures in air : Kinetic promotion and lnhibition, time-dependent catalyst activity,” Journal of Catalysis, Vol. 163, p1-11, 1996.
45.M. D. Driedden et al, “Gas-phase photooxidation of trichloroethylene on TiO2 and ZnO: Influence of trichloroethylene pressure, oxygen pressure, and the photocatalyst surface on the product distribution, ” J. Phys. Chein. B, Vol. 102, p549-556, 1998.
46.Hioyuki Uchida, Shinobu Katoh, Masahiro Watanabe, “Photocatalytic degradation of trichlorobenzene using immobilizes TiO2 films containing poly(tetrafluoroethylene) and platinum metal catalyst,” Electrochinica Acta, Vol. 43, No. 14-15. p2111-2116, 1998.
47.Jong-Soon Kim, Kiminori Itoh, Masayuki Murabayashi, “ Photocatalytic degradation of trichloroethylene in the gas phase over TiO2 sol-gel films: Analysis of products, ” Chemosphere, Vol. 36, No. 3, p483-495, 1998.
48.Kuo-Hua Wang, Huan-Hung Tsai, Yung-Hsu Hsieh, “A study of photocatalytic degradation of trichloroethylene in vapor phase on TiO2 photocatalyst, ” Chemosphere, Vol. 36, No. 13, p2763-2773, 1998.
49.Kuo-Hua Wang, Yung-Hsu Hsieh, “Heterogeneous photocatalytic degradation of trichloroethylene in vapor phase by titanium dioxide, ”Environment Intemational, Vol. 24, No. 3, p267-274, 1998.
50.Jong Soon Kim, Kiminori Itoh, Masayuki, Bu Ahn Kim, “Pretreatment of the photocatalyst and the photocatalytic degradation of trichloroethylene in the gas-phase, ” Chemosphere, Vol. 38, No. 13, p2969-2978, 1999.
51.Hong Liu, Shao''an Cheng, Jianqing Zhang, Chunan Cao, Weichuan Jiang, “The gas-photocatalytic degradation of trichloroethylene without water, ” Chemosphere, Vol. 35, No. 12, p2881-2889, 1997.
52.Won Bae Kim, “Gas phase transesterifcation of dimethylcarbonate and phenol over supported titanium dioxide,” Journal of Catalysis, Vol. 185, p307-313, 1999.
53.D. Dumitriu, A.R. Bally, C. Ballif, P. Hones, P.E. Schmid, R. Sanjines, F. Levy, V. I. Parvulescu, “Photocatalytic degradation of phenol by TiO2 thin films prepared by sputtering, ” Applied Catalysis B: Environmental, Vol. 25, p83-92, 2000.
54.Timothy H. Obee et al, “Effects of moisture and temperature on the photooxidation of ethylene on titania,” Environmental science & Technology, Vol. 31, No. 7, p2034-2038, 1997.
55.Akawat Sirisuk et al, “Photocatalytic degradation of ethylene over thin films of titania supported on glass rings, ” Catalysis Today, Vol. 54, p159-164, 1999.
56.Dal-Rung Park et al, “Photocatalytic oxidation of ethylene to CO2 and H2O on ultrafine powdered YiO2 photocatalysts in the presence of O2 and H2O, ” Journal of Catalysis, Vol. 185, p114-119, 1999.
57.Suzuko Yamazaki, Satoru Tanaka, Hidekazu Tsukamoto, “Kinetic studies of oxidation of ethylene over a TiO2 photocatalyst,” Journal of photochemistry and photobiology A: Chemistry, Vol. 121, p55-61, 1999.
58.Teruhisa Ohno et al, “Epoxidation of olefins on photoirradiated titanium dioxide powder using molecular oxygen as an oxidant, ” Journal of Catalysis, Vol. 176, p76-81, 1998.
59.M. A. Aguado and M. A. Anderson, “Degradation of formic acid over semiconducting membranes supported on glass: effects of structure and electronic doping,” Solar energy materials and solar cells, Vol. 28, p345-361, 1993.
60.Timothy N. Obee, Sunita Satyapal, “Photocatalytic decomposition of DMMP on titania,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 118, p45-51, 1998.
61.I. Poulios, M. Kositzi, A. Kouras, “Photocatalytic decomposition of triclopry over aqueous semiconductor suspensions,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 115, p175-183, 1998.
62.Hiromi Yaashita et al, “Photocatalyticdegradation of 1-Oxranol on anchored titanium oxide and on TiO2 powder catalysts,” Journal of Catalysis, Vol. 158, p97-101, 1996.
63.D. Dumitriu, “Photocatalytic degradation of phenol by TiO2 thin films prepared by sputtering, ” Applied Catalysis B: Environmental, Vol. 25, p83-92, 2000.
64.I. Sopyan et al, “A film-type photocatalyst incorporating highly active TiO2 powder and fluororesin binder: photocatalytic activity and long-term stability,” Journal of Electroanalytical Chemistry, Vol. 415, p183-186, 1996.
65.Iis Sopyan et al, “An efficient TiO2 thin-film photocatalyst: photocatalytic properties in gas-phase acetaldehyde degradation,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 98, p79-86, 1996.
66.Darrin S et al, “Catalyst design to change selectivity of photocatalytic oxidation,” Journal of Catalysis, Vol. 175, p213-219, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 5.宋國誠,「中國大陸的『現代化理論』-從全球現代化到大陸的現代化」,台北:中國大陸研究,第35卷,第6期,民國81年6月。
2. 4.吳迎春,「台灣還有什麼競爭力?」,台北:天下雜誌,第237期,民國90年2月。
3. 8.李瓊莉,「經濟安全概念在亞太地區的發展」,台北:問題與研究,第38卷,第2期,民國88年2月。
4. 9.杜巧霞,「區域整合與多邊貿易的自由化」,台北:經濟前瞻,第11卷,第2期,民國85年3月。
5. 11.周煦,「全球情勢及其對兩岸關係的影響」,台北:問題與研究,第35卷,第10期,民國85年10月。
6. 12.林正義,「亞太安全保障的新體系」,台北:問題與研究,第35卷,第12期,民國85年12月。
7. 13.林碧炤,「台灣的綜合安全」,台北:戰略與國際研究,第1卷,第1期,民國88年1月。
8. 14.林碧炤,「國際衝突的研究途徑與處理方法」,台北:問題與研究,第35卷,第3期,民國85年3月。
9. 15.孫震,「我國國防政策的現況與檢討」,台北:理論與政策,民國84年冬季號。
10. 16.徐東海,「現階段兩岸經貿關係之評估與展望」,台北:共黨問題研究,第23卷,第6期,民國86年6月。
11. 17.殷天爵,「中共大國外交與夥伴關係之研析」,台北:共黨問題研究,第25卷,第 3期,民國88年3月。
12. 18.秦宗春,「國際貿易與安全之相關國際規範與發展」,台北:戰略與國際研究,民國88年4月。
13. 23.莫大華,「安全研究之趨勢」,台北:問題與研究,第35卷,第9期,民國85年9月。
14. 24.莫大華,「安全研究論戰之評析」,台北:問題與研究,第37卷,第8期,民國87年8月。
15. 25.莫大華,「後冷戰時期東協的軍備競賽與區域安全」,台北:問題與研究,第35 卷,第3期,民國85年3月。
 
系統版面圖檔 系統版面圖檔