(3.236.175.108) 您好!臺灣時間:2021/02/27 06:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉智立
研究生(外文):Steven Liu
論文名稱:反向高電子遷移率電晶體之雜訊特性分析
論文名稱(外文):Noise Performance Analysis of Inverted High Electron Mobility Transistors (IHEMTs)
指導教授:李豐明李豐明引用關係劉國偉劉國偉引用關係
指導教授(外文):Fong-Ming LeeKuo-Wei Liu
學位類別:碩士
校院名稱:中國文化大學
系所名稱:材料科學與製造研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:94
中文關鍵詞:反向高電子遷移率電晶體高電子遷移率電晶體假晶高電子遷移率電晶體量子井調變摻雜場效電晶體費米能階二維電子氣砷化鎵
外文關鍵詞:IHEMTHEMTPHEMTQuantum WellMODFETFermi Level2DEGGaAs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:232
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
高電子遷移率電晶體(High Electron Mobility Transistor, HEMT)或稱為調變摻雜場效電晶體(Modulation Doped Field Effect Transistor, MODFET)之雜訊模型已由Anwar等人[37, 38]提出。此模型基於一個前後一致(Self-Consistent)之計算,使吾人能藉以描述此類元件之量子井(Quantum Well, QW)性質。這些包括:二維電子氣(Two Dimensional Electron Gas, 2DEG)之平均距離 及費米能階 (Fermi Level),作為2DEG之濃度 之函數。
一個分析模型使用於研究2DEG侷限在砷化鎵/砷化鋁鎵(GaAs/AlGaAs) QW中,產生反向高電子遷移率電晶體(Inverted High Electron Mobility Transistor, IHEMT)。同樣地,費米能階與QW中之載子(Carriers)平均距離亦作為2DEG之濃度 的函數。基於前後一致地薛丁格(Schrödinger)與帕松(Poisson)方程式所解答之電荷控制模型(Charge Control Model)亦由Anwar等人[37, 38]提出。結果證明此類結構之一種獨特性質:2DEG之濃度 其平均距離增加之獨特行為。此分析結果將可拓展模型之電流-電壓(I-V)特性。
對於載子速度-電場(Carrier Velocity-Electric Field) ( )特性,過去使用雙線近似值(Two-Line Approximation)或指數近似值 (Exponential Approximation),而本論文使用一個改進過的 特性於雜訊模型。另外,降低電位(Reduced Potentials)用於計算元件之直流(Direct Current, D.C.) I-V曲線特性、小信號參數與雜訊性質分析。
在此論文中雜訊分析可概述為:(a)線性區熱雜訊與通道飽和區之熱雜訊計算;(b)通道線性區與飽和區中之感應閘極電流雜訊(Induced Gate Current Noise)之估算;(c)關於不同雜訊源之雜訊係數計算,如P和R分別為關於汲極(Drain)與閘極(Gate)之雜訊係數;以及(d)在不同雜訊源的關聯係數(Correlation Coefficient)之計算。基於等效雜訊電路(Equivalent Noise Circuit)以全部雜訊源與元件之小信號參數,及全部雜訊源與它們之相互關係,計算最小雜訊指數 (Minimum Noise Figure)與最小雜訊溫度 (Minimum Noise Temperature)。計算結果與一些文獻的實驗數據作比較,結果證明所提出的理論與實驗的研究數據間具有良好的一致性。

Abstract
A noise model for High Electron Mobility Transistor (HEMT) or Modulation Doped Field Effect Transistor (MODFET) had been presented [37, 38]. The model is based on a self-consistent solution of the Schrödinger and Poisson’s equations. The self-consistent calculation allows us to characterize the quantum well (QW) properties for this class of devices. These include the average distance of the Two Dimensional Electron Gas (2DEG) and the Fermi level , as a function of 2DEG concentration .
An analytical model is used to investigate properties of the two-dimensional electron gas (2DEG) confined in a GaAs/AlGaAs quantum well (QW) formed in a Inverted High Electron Mobility Transistor (IHEMT). The position of the Fermi level and the average distance of the carriers in the well have been calculated as a function of the 2DEG concentration, ns. A charge control model has presented by Anwar et al. [37, 38] based on the self-consistent solution of Schördinger and Poisson’s equation. The results show a unique behavior of the average distance of the 2DEG increases with ns, a property unique to these types of structures. The analysis is extended to model current-voltage characteristics.
Instead of using a two-line or an exponential approximation to the velocity-electric field ( ) characteristic, an improved is used in this noise model. In addition, the reduced potentials are used to make the device D.C. current-voltage characteristic, small-signal parameters and noise properties analysis in nature.
The analysis of noise in this research can be outlined as: (a) calculation of thermal noise in the linear and saturation region of the channel, (b) evaluation of induced gate current noise in the linear and saturation region of the channel, (c) calculation of noise coefficient for different noise sources, such as P and R which are the noise coefficients for drain and gate noise, respectively and (d) the calculation of the correlation coefficient between different noise sources. Based on the equivalent noise circuit in terms of all noise sources and device small signal parameters, and accounting for all noise sources and their correlation, the minimum noise figure and minimum noise temperature are calculated. The calculated results are compared to the experimental data. The results show excellent agreement between the proposed theory and experimental data.

內容目錄
第一章 序論 1
1.1 問題說明 -------------------------------------------------------1
1.2 文獻回顧 -------------------------------------------------------3
1.3 研究方法 -------------------------------------------------------5
第二章 反向HEMT元件物理分析-Ⅰ 7
2.1 元件簡介 --------------------------------------------------------7
2.1.1 Ⅲ-Ⅴ族半導體材料性質 -----------------------------7
2.1.2 元件結構與量子井(QW)特性 ----------------------20
2.2 電荷控制模型 -------------------------------------------------32
2.3 電流-電壓(I-V)特性 ----------------------------------------35
2.4 小信號參數 ----------------------------------------------------40
2.4.1 互導( ) -----------------------------------------------40
2.4.2 汲極電阻( ) -------------------------------------------42
2.4.3 閘極-源極電容( ) ----------------------------------44
2.4.4 單位電流增益截止頻率( ) ------------------------48
第三章 反向HEMT元件物理分析-Ⅱ 50
3.1 雜訊分析 -------------------------------------------------------50
3.1.1 線性區(第Ⅰ區)汲極熱雜訊( ) ------------------53
3.1.2 線性區(第Ⅰ區)閘極電流雜訊( ) ----------------56
3.1.3 飽和區(第Ⅱ區)汲極熱雜訊( ) -----------------59
3.1.4 飽和區(第Ⅱ區)閘極電流雜訊( ) ---------------63
3.2 關聯係數 -------------------------------------------------------65
3.3 雜訊指數計算 -------------------------------------------------67
第四章 結果與討論 73
第五章 結論與展望 81
參考文獻 82
附錄A 電荷微量變動 之推導 90
表目錄
表1 矽、砷化鎵與鍺之特性( ) [46] -----------------------------14
圖目錄
圖1 砷化鎵晶格[45] -----------------------------------------------------------7
圖2 砷化鎵原子鍵結[45] --------------------------------------------------------------8
圖3(a) p型砷化鎵原子鍵結[45] -------------------------------------------10
圖3(b) n型砷化鎵原子鍵結 -----------------------------------------------10
圖4(a) p型矽摻質砷化鎵原子鍵結 --------------------------------------12
圖4(b) n型矽摻質砷化鎵原子鍵結[45] ----------------------------------12
圖5 半導體能帶圖,顯示電子能量視為一個位置函數[45] ----------15
圖6 重摻雜n型半導體能帶圖[45] ----------------------------------------16
圖7(a) 砷化鎵之能帶結構[47] --------------------------------------------18
圖7(b) 矽之能帶結構[47] --------------------------------------------------18
圖8(a) 正規的高電子遷移率電晶體(HEMT)結構 --------------------21
圖8(b) 反向高電子遷移率電晶體(IHEMT)結構 ----------------------21
圖9(a) 第一型IHEMT之傳導能帶圖,有一個厚的摻雜砷化鋁鎵層,其並非完全空乏。 --------------------------------------------23
圖9(b) 第II型IHEMT之傳導能帶圖,有一個薄的摻雜砷化鋁鎵層,其為完全空乏。 -----------------------------------------------------23
圖10 IHEMT之離散能階[48] ----------------------------------------------25
圖11 IHEMT之剖面,顯示(a)傳導帶,(b)電場,(c)電荷密度[48]。----------------------------------------------------------------------------25
圖12 在77 K傳導帶輪廓被畫成距離之函數。特徵能量(虛點線)及2DEG濃度 之分佈(鍊線)亦畫出。假設2DEG之濃度 [52]。 -------------------------------------------27
圖13 對於IHEMT在300 K(實線)及77K(虛線),次能帶佔有因子被畫成2DEG濃度 之函數[52]。 -----------------------------28
圖14 對於第Ⅰ型(實線)與第Ⅱ型(虛線)IHEMT, 2DEG之平均距離 與費米能階 之位置被畫成2DEG濃度 之函數[52]。 --------------------------------------------------------------------30
圖15 砷化鋁鎵/砷化銦鎵/砷化鎵PHEMT能帶圖 --------------------31
圖16 一個改進過的 特性(實線),比較於蒙地卡羅(Monte Carlo)模擬資料(鑽石格點)。長虛線表示指數近似值及短虛線表示雙線近似值。 ----------------------------------------------------------36
圖17 放大器之響應曲線頻寬 --------------------------------------------48
圖18 散射矩陣 --------------------------------------------------------------51
圖19 雜訊量測儀器 -------------------------------------------------------52
圖20 IHEMT之等效雜訊電路 --------------------------------------------52
圖21 雜訊係數P,R與C被化成一個飽和汲極電流 之函數對於0.25 μm閘極長度GaAs/AlGaAs IHEMT,以 (實線)與 (虛線),其中 、 、 、 、 ,及 -------------------------------------------------------------68
圖22 砷化鎵/砷化鋁鎵IHEMT(第Ⅱ型)電流電壓(I-V)特性之計算,比較於Nishi等人[32]所提出之實驗數據 -------74
圖23 砷化鎵/砷化鋁鎵IHEMT(第Ⅱ型)互導 (實線)之計算被畫成閘極-源極電壓之函數。圖示之實驗數據(鑽石格點)由Fujishiro等人[72]所提出 -----------------------------75
圖24 砷化鎵/砷化鋁鎵IHEMT(第II型)單位電流截止頻率 之計算。圖示之實驗數據(鑽石格點)由Fujishiro等人[72]所提出 ------------------------------------------------------77
圖25 砷化鎵/砷化鋁鎵IHEMT (第II型)汲極電導被畫成閘極長度之函數。圖示之實驗數據(鑽石格點)由Nishi等人[32]所提出 ------------------------------------------------------78
圖26 關於砷化鎵/砷化鋁鎵IHEMT、砷化鋁鎵/砷化鎵HEMT與假晶PHEMT,最小雜訊指數 被畫成汲極-源極電流 之函數。此圖中,顯示HEMT在12 GHz [73]、PHEMT在94 GHz [13]與12 GHz [74]之實驗數據。實線表示HEMT最小雜訊指數 操作於12 GHz之理論計算及虛線分別表示PHEMT操作於94 GHz與12 GHz ----------------------------------------------80

參考文獻
[1] R. Dingle, H. Stormer, A. C. Gossard and W. Wiegnmann, “Electron mobilities in modulation doped semiconductor heterojunction superlattices.” Appl. Phys. Lett., vol. 33, no. 7, pp. 665-667, 1978.
[2] P. C. Chao, M. S. Shur, R. C. Tiberio, K. H. G. Duh, P. M. Smith, J. M. Ballingall, P. Ho and A. A. Jabra, “DC and microwave characteristics of sub-0.1-μm gate-length planar-doped pseudomorphic HEMTs.” IEEE Transactions on Electron Devices, vol. ED-36, no. 3, pp. 461-472, 1989.
[3] P. C. Chao, A. J. Tessmer, K. H. G. Duh, P. Ho, M. Y. Kao, P. M. Smith, J. M. Ballingall, S. M. J. Liu and A. Jabra, “W-band low-noise InAlAs/InGaAs lattice-matched HEMT’s.” IEEE Electron Device Letters, vol. EDL-11, no. 1, pp. 59-62, 1990.
[4] K.-H. G. Duh, M. W. Pospieszalski, W. F. Kopp, P. Ho, A. A. Jabra, P.-C. Chao, P. M. Smith, L. F. Lester, J. M. Ballingall and S. Weinreb, “Ultra-low-noise cryogenic high-electron-mobility transistors.” IEEE Transactions on Electron Devices, vol. ED-35, no. 3, pp. 249-254, 1988.
[5] K.-H. G. Duh, S.-M. J. Liu, L. F. Lester, P.-C. Chao, P. M. Smith, M. B. Das, B. R. Lee and J. M. Ballingall, “Ultra-low-noise characteristics of millimeter-wave high electron mobility transistors.” IEEE Transactions on Electron Devices, vol. ED-35, no. 10, pp. 521-523, 1988.
[6] K.-H. G. Duh, P.-C. Chao, P. Ho, A. Tessmer, S.-M. J. Liu, M. Y. Kao, P. M. Smith and J. M. Ballingall, “W-band InGaAs HEMT low noise amplifier.” IEEE MTT-S Digest, pp. 595-598, 1990.
[7] K.-H. G. Duh, P.-C. Chao, S.-M. J. Liu, P. Ho, M. Y. Kao and J. M. Ballingall, “A super low-noise 0.1μm T-gate InAlAs-InGaAs-InP HEMT.” IEEE Microwave and Guided Wave Letters, vol. 1, no. 5, pp. 114-116, May 1991.
[8] K.-H. G. Duh, P.-C. Chao, M. Y. Kao, P. M. Smith and A. A. Jabra, “High-performance InP-based HEMT millimeter-wave low-noise amplifiers.” IEEE MTT-S Digest, pp. 805-880, 1989.
[9] M. W. Pospieszalski, S. Weinreb, R. D. Narrod and R. Harrids, “FET’s and HEMT’s at cryogenic temperatures- their properties and use in low-noise amplifiers.” IEEE Trans. Microwave Theory and Techniques, vol. MTT-36, no. 3, pp. 552-560, 1988.
[10] M. W. Pospieszalski, “Modeling of noise parameter of MESFET’s and MODFETs and their frequency and dependence.” IEEE Trans. Microwave Theory and Techniques, vol. MTT-37, no. 9, pp. 1350-1354, 1989.
[11] P. M. Smith, P. C. Chao, K. H. G. Dhu and B. R. Lee, “94-Ghz transistor amplification using a HEMT.” IEEE Electron Device Letters, vol. 22, pp. 780-784, 1986.
[12] P. M. Solomon and H. Morkoc, “Modulation-doped GaAs/AlGaAs heterojunction field-effect transistors (MODFET’s), ultrahigh-speed device for supercomputers.” IEEE Transactions on Electron Devices, vol. ED-31, no. 8, pp. 1015-1027, 1984.
[13] K. L. Tan, R. M. Dia, D. C. Streit, T. Lin, T. Q. Trinh, A. C. Han, P. H. Liu, P.-M. D. Chow and H. C. Yen, “94-GHz 0.1-μm T-gate low-noise pseudomorphic InGaAs HEMT’s.” IEEE Electron Device Letters, vol. EDL-11, no. 12, pp. 585-587, 1991.
[14] K. Tankakuwa, K. Tanaka, Y. Mori, M. Arai, Y. Kato and S. Watanabe, “A low noise microwave HEMT using MOCVD.” IEEE Transactions on Electron Devices, vol. ED-33, no. 5, pp. 2035-2058, 1986.
[15] F. Ali and A. Gupta, HEMTs & HBTs: Devices, Fabrication and Circuit, Artech House, 1991.
[16] A. Christou, W. Tseng, M. Peckerar, W. T. Anderson, D. M. Macarthy and F. A. Bout, IEEE IRPS, pp. 54-58, 1985.
[17] H. Hida, K. Ohata, Y. Suzuki and H. Toyoshima, “A new low-noise AlGaAs/GaAs 2DEG FET with a surface undoped layer.” IEEE Transactions on Electron Devices, vol. ED-33, no. 5, pp. 601-607, 1986.
[18] L. D. Nguyen, L. E. Larson and U. Mishira, “Ultra-high-speed modulation-doped field-effect transistors: A Tutorial Review.” Proceedings of the IEEE, vol. 80, no. 4, pp. 494-519, 1992.
[19] Y. Ando and T. Itoh, “DC, small-signal and noise modeling for two-dimensional electron gas field-effect transistors based on accurate charge-control characteristics.” IEEE Transactions on Electron Devices, vol. ED-37, no. 1, pp. 67-78, 1990.
[20] T. M. Brookes, “The noise properties of high electron mobility transistors.” IEEE Transactions on Electron Devices, vol. ED-33, pp. 52-57, 1986.
[21] H. Fukui, “Design of microwave GaAs MESFET’s for broad-band low-noise amplifiers.” IEEE Trans. Microwave Theory and Technologies, vol. MTT-27, no. 7, pp. 643-650, 1979.
[22] R. A. Pucel, “Signal and noise properties of Gallium Arsenide microwave field-effect transistors.” Advances Electron, Electron Phys., vol. 38, pp. 195-265, 1974.
[23] A. Van Der Ziel, “Gate noise in field-effect transistors at moderately high frequency.” Proc. IEEE, vol. 51, pp. 461-467, 1963.
[24] A. Van Der Ziel, “Noise in solid-state devices and lasers.” Proceedings of the IEEE, vol. 58, no. 8, pp. 1178-1206, Aug. 1970.
[25] A. Van Der Ziel, Noise in Solid State Devices and Circuits, Wiley Interscience, 1986.
[26] H. Fukui, “Optimal noise figure of microwave GaAs MESFET’s.” IEEE Transactions on Electron Devices, vol. ED-26, no. 7, pp. 1032-1037, 1979.
[27] Y. Ando and T. Itoh, “Analysis of charge control in Pseudomorphic two-dimensional electron gas field-effect transistors.” IEEE Transactions on Electron Devices, vol. ED-35, no. 12, pp. 2295-2301, 1988.
[28] K. Lee and M. Shur, “Charge control model of inverted GaAs/AlGaAs modulation doped FET’s (IMODFET’s),” J. Vac. Sci. Technol., vol. B2, no. 2, pp. 113-116, Apr./June 1984.
[29] N. C. Cirillo, M. S. Shur, and J. K. Abrokwah, “Inverted GaAs/AlGaAs modulation doped field-effect transistor with extremely high transconductance, “IEEE Electron Device Lett., vol. EDL-7, no. 2, pp. 71-74, 1986.
[30] D. Kim, A. Madhukar, K.-Z. Hu, and W. Chen, “Realization of high mobilities at ultralow electron density in inverted heterojunctions, “Appl. Phys. Lett., vol. 56, no. 19, pp. 1874-1876, 1990.
[31] P. M. Echternach, K. Hu, A. Madhukar, and H. M. Bozer, “Transport measurement on a high mobility, ultralow carrier concentration inverted GaAs/AlGaAs heterostructure, “Physica B, vols. 165 and 166, pp. 871-872, 1990.
[32] S. Nishi, S. Seki, T. Saito, H. I. Fujishiro, and Y. Sano, “A 0.5-μm-gate GaAs/AlGaAs inverted HEMT IV-multiplier and D/A converter, “IEEE Trans. Electron Devices, vol. 36, no. 10, pp. 2191-2195, 1989.
[33] A. E. Schmitz, L. D. Nguyen, A. S. Brown, and R. A. Metzger, “InP-based inverted high electron mobility transistors, “IEEE Trans. Electron Devices, vol. 38, no. 12, pp. 2702, 1991.
[34] M. Kasashima, Y. Arain, H. I. Fujishiro, H. Nakamua, and S. Nishi, “Pseudomorphic inverted HEMT suitable to low supplied voltage application, “IEEE Trans. Microwave Theory and Technol. vol. MTT-40, no. 12, pp. 2381-2386, 1992.
[35] J. Yoshida, “Classical versus quantum mechanical calculation of the electron distribution at the n-AlGaAs/GaAs heterointerface, “IEEE Trans. Electron Devices, vol. 33, pp. 154-156, 1986.
[36] A. N. Khonder and A. F. M. Anwar, “Analytical model for AlGaAs/GaAs heterojunction quantum wells. “Solid-State Electron., vol. 30, no. 8, pp. 847-852, 1987.
[37] A. F. M. Anwar and A. N. Khondker, “An envelope function description of doube-heterojunction quantum wells.” J. Appl. Phys., vol. 62, pp. 4200-4203, 1987.
[38] A. N. Khondker and A. F. M. Anwar, Solid-State Electronics, vol. 30, pp. 847-851, 1987.
[39] A. F. M. Anwar and Kuo-Wei Liu, “Noise properties of AlGaAs/GaAs MODFETs.” IEEE Transactions on Electron Devices, vol. ED-40, no. 6, pp. 1174-1176, June, 1993.
[40] A. F. M. Anwar and Kuo-Wei Liu, “Noise temperature modeling for AlGaAs/GaAs and AlGaAs/InGaAs/GaAs HEMTs.” Solid-State Electrics, 1994.
[41] Kuo-Wei Liu and A. F. M. Anwar, “An Analytical Model of Current-Voltage Characteristics and DC, Small-Signal Parameters for FETs.” Solid-State Electronics, 1994.
[42] Kuo-Wei Liu and A. F. M. Anwar, “A Self-Consistent Calculation of the Small Signal Parameters for AlGaAs/InGaAs/GaAs HEMTs.” Solid-State Electronics, vol. 37, no.1, pp. 51-54, Jan. 1994.
[43] A. F. M. Anwar, Kuo-Wei Liu and M. M. Jahan, “Noise performance of SiGe/Si FETs,” SISDEP’93, Australia, Sep. 1993.
[44] A. B. Grebene and S. K. Ghandhi, “General theory for pinched operation of the junction-gate FETs.” Solid-State Electronics, vol. 12, pp. 573-589, 1969.
[45] William Liu, “Fundamentals of Ⅲ-Ⅴ Devices: HBTs, MESFETs, and HFETs/HEMTs.” Wiley-Interscience, 1999.
[46] Donald A. Neamen, “Semiconductor Physics & Devices: Basic Principles.” 2nd Ed., Irwin, 1997.
[47] Sze, S. M. “Semiconductor Device: Physics and Technology.” New York: Wiley, 1985.
[48] Theo G. Van De Roer, “Microwave Electronic Devices.” Chapman & Hall, 1994.
[49] A. N. Khondker and A. F. M. Anwar, “Analytical model for AlGaAs/GaAs heterojunction quantum wells.” Solid-State Electronics, vol. 30, no. 8, pp. 847-852, 1987.
[50] A. N. Khondker, A. F. M. Anwar, M. A. Islam, L. Limoncelli and D. Wilson, “Charge control model for MODFETs.” IEEE Transactions on Electron Devices, vol. ED-33, pp. 1825-1826, 1986.
[51] A. N. Khondker and A. F. M. Anwar, “Approximate analytic current-voltage calculation for MODFET’s.” IEEE Transactions on Electron Devices, vol. 37, pp. 314-317, 1990.
[52] A. F. M. Anwar, Kuo-Wei Liu and A. N. Khondker, “A charge-control and current-voltage model for inverted MODFETs.” IEEE Transaction on Electron Devices, vol. 42, no. 4, pp. 586-590, April. 1995.
[53] N. C. Cirillo, Jr., M. S. Shur, J. K. Abrokwah, “Inverted GaAs/AlGaAs modulation-doped field-effect transistors with extremely high transconductances.” IEEE Electron Device Letters, vol. EDL-7, no. 2, pp. 71-74, 1986.
[54] K. Lee and M. Shur, “Charge control model for inverted GaAs-AlGaAs modulation doped FET’s (IMODFET’s).” J. Vac. Sci. Technol. B 2(2), pp.113, 1984.
[55] W. Baechtold, “Noise behavior of GaAs field-effect transistors with short gate length.” IEEE Transactions on Electron Devices, vol. ED-19, pp. 674-680, 1972.
[56] A. Cappy, “Noise modeling and measurement techniques.” IEEE Transas. Microwave Theory and Tech., MTT-36, no. 1, pp. 1-10, 1988.
[57] C. Z. Cil and S. Tansal, “A new model for modulation-doped FETs.” IEEE Electron Device Letters, vol. EDL-6, no. 8, pp. 434-436, 1985.
[58] H. Statz, H. A. Haus and R. A. Pucel, “Noise characteristics of gallium arsenide field-effect transistors, “IEEE Transactions on Electron Devices, vol. ED-21, no. 9, pp. 549-562, 1974.
[59] J. C. Sturm, E. J. Prinz and C. W. Magee, “Graded-Base heterojunction bipolar transistors grown by rapid thermal chemical vapor deposition withnear-ideal electrical characteristics.” IEEE Electron Device Letters, vol. 12, no. 6, pp. 303-305, June 1991.
[60] C.-S. Chang and H. R. Fetterman, “An analytic model for HEMT’s using velocity-field dependence.” IEEE Transactions on Electron Devices, vol. ED-34, no. 7, pp. 1456-1462, 1987.
[61] C.-S. Chang and H. R. Fetterman, “An analytic model for high electron mobility transistors.” Solid-State Electronics, vol. 30, no. 5, pp. 485-491, 1987.
[62] R. A. Giblin, E. F. Scherer and R. L. Wierich, “Computer simulation if instability and noise in high-power avalanche devices.” IEEE Transactions on Electron Devices, vol. ED-20, no. 7, pp. 404-418, 1973.
[63] F. N. Trofimenkoff, Proc. IEEE, vol. 53, pp. 1765, 1965.
[64] A. F. M. Anwar, Kuo-Wei Liu and R. D. Carroll, “An envelope function description of the quantum well formed in strain layer SiGe/Si MODFETs.” Jour. of Appl. Phys., vol. 74, no. 3, pp. 2064-2066, Aug. 1993.
[65] A. Cappy, “Noise modeling in submicronmeter gate two dimensional electron gas field effect transistors.” IEEE Transactions on Electron Devices, vol. ED-32, no. 12, pp. 2787-2795, 1985.
[66] W. Baechtold, “Methods for solving noise problem.” Proceedings of IRE, pp. 609-638, May, 1956.
[67] T. Henderson, M. I. Aksun, C. K. Peng, H. Morkoc, P. C. Chao, P. M. Smith and K.-H. G. Duh, “Microwave performance of a quarter-micrometer gate low-noise pseudomorphic InGaAs/AlGaAs modulation-doped field effect transistor.” IEEE Electron Device Letters, vol. EDL-7, no. 12, pp. 649-651, 1986.
[68] B. R. Nag, et al., “High-field autocovariance coefficient, diffusion coefficient and noise in InGaAs at 300K.” Solid-State Electronics, vol. 30, pp. 235-293, 1987.
[69] A. Okamoto, “Strained modulation-doped structures.” Jpn. J. Appl. Phys., vol. 26, pp. 539-542, 1987.
[70] Henry W. Ott, “Noise Reduction Techniques in Electronic Systems.” Second Edition, John Wiley & Sons, 1988.
[71] A. J. Shey and W. H. Ku, “On the charge control of the two-dimensional electron gas for analytic modeling of HEMTs.” IEEE Electron Device Letters, vol. EDL-9, no. 12, pp. 624-626, 1988.
[72] H. I. Fujishiro, T. Saito, S. Nishi, S. Seki, Y. Sano and K. Kaminishi, Int. Symp. “GaAs and Related Compounds.” pp. 653-657, 1987.
[73] K. Kamei, S. Hori, H. Kawasaki, H. Mashita and Y. Ashizawa, “Extremely low-noise 0.25-μm-gate HEMTs.” Proc. 12th GaAs Related Compounds Conf., pp. 541-546, 1991.
[74] J. Wenger, “Quarter-micrometer low-noise pseudomorphic GaAs HEMT’s with extremely low dependence of the noise figure on drain-source current.” IEEE Electron Device Letters, vol. EDL-14, no. 1, pp. 16-18, 1993.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔