跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/11 02:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳盈州
研究生(外文):Ying-Chou Chen
論文名稱:去乙醯度、濃度及pH值對幾丁聚醣流變特性及其與肌原纖維蛋白質交互作用之研究
論文名稱(外文):Studies of Rheological Properties of Chitosan and its Interaction with Myofibrillar Proteins as Influenced by Chitosan''s Degree of Deacetylation、Concentration and pH
指導教授:林國維林國維引用關係
指導教授(外文):Kuo-Wei Lin
學位類別:碩士
校院名稱:靜宜大學
系所名稱:食品營養學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:95
中文關鍵詞:幾丁聚醣去乙醯度動態流變肌原纖維蛋白質SDS-PAGE
外文關鍵詞:chitosandegree of deacetylationdynamic rheologymyofibrillar proteinsSDS-PAGE
相關次數:
  • 被引用被引用:2
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗探討不同去乙醯度(dd 50, dd 75, dd 85, dd99)、濃度(0.5 ﹪, 1.0 ﹪, 1.5 ﹪)或pH值(3, 5)之幾丁聚醣與肌原纖維蛋白質混合加熱膠凝時,幾丁聚醣對肌原纖維蛋白質熱凝膠之凝膠強度與蛋白質變化的影響。由動態流變測定發現豬里肌肉中鹽溶性蛋白質(Salt-soluble proteins;SSP)的熱凝膠過程可分為低溫區(50 ℃以下)與高溫區(50 ℃以上)兩階段。添加幾丁聚醣於SSP中在低溫區並無明顯的流變特性變化,然而幾丁聚醣的添加卻會降低SSP在高溫區熱凝膠之複合模量(complex modulus;G*),可知幾丁聚醣胺基帶正電荷的特性干擾SSP的膠凝作用。無論去乙醯度為何,添加幾丁聚醣的濃度愈高,幾丁聚醣對SSP凝膠作用之干擾則愈強,造成幾丁聚醣/SSP混合系統熱凝膠之G*愈低。幾丁聚醣/SSP熱凝膠之tanδ(相角正切值)隨著加熱溫度的增加而降低,當加熱終點(75 ℃)時,幾丁聚醣/SSP熱凝膠之tanδ較單獨SSP熱凝膠之tanδ為高。而添加高濃度(1.5 ﹪)之dd 99幾丁聚醣,則可能因其胺乙醯基最少,以致於與SSP因離子鍵作用,而有最低之tanδ。
調整幾丁聚醣溶液pH至3時,黏度皆較未調整pH值時增加。當添加幾丁聚醣(pH 3)的濃度愈高,幾丁聚醣/SSP混合系統熱凝膠之G*愈高,亦即膠體彈性增高,因幾丁聚醣與SSP產生離子鍵結增加,故增強SSP在低溫區的膠凝作用。而dd 99因胺基正電荷數量增加,與SSP產生較強的離子鍵,故凝膠體之彈性現象較強。當幾丁聚醣溶液之pH值調整至5,其黏度則較未調整pH時為低。於相同去乙醯度時,添加幾丁聚醣(pH 5)的濃度愈高,幾丁聚醣/SSP混合系統熱凝膠之G*則愈低。而dd 99因正電荷數減少,在高溫區段與SSP形成氫鍵增加而干擾了SSP熱凝膠,故其G*下降。
幾丁聚醣/SSP混合系統之凝膠體以8 M urea處理後,進行SDS-PAGE膠體電泳,結果發現在焦集膠體部分有大分子蛋白質(>200 KDa)的聚集,顯示幾丁聚醣與SSP形成新的共價鍵結而產生大分子聚合物。dd 50幾丁聚醣與SSP作用形成幾丁聚醣/SSP聚合物,導致凝膠體之肌凝蛋白重鏈(200 KDa)及肌動蛋白(45 KDa)的蛋白質帶有消失的現象。而pH 3及pH 5幾丁聚醣/SSP凝膠體之電泳結果則發現,因為幾丁聚醣胺基帶正電荷的改變,SSP凝膠體在電泳圖中大分子蛋白質聚合物的含量則較未調整pH前有減少的現象。
Rheological and thermal gelation characteristics of different degree of deacetylation (dd 50, dd 75, dd85, dd 99), concentration (0.5%, 1.0%, 1.5%) or pH (3, 5) of chitosan solution (in 1% lactic acid) and the mixture of chitosan and myofibrillar proteins were evaluated. Interactions of chitosan with myofibrillar proteins through SDS-PAGE during heating were also demonstrated. Thermal gelation processes of porcine salt-soluble proteins (SSP) extracted from tenderloin could be separated into the low temperature zone (< 50℃) and high temperature zone (> 50℃). No apparent rheological changes were noticed for chitosan/SSP mixture in the low temperature zone, but incorporation of chitosan reduced complex moduli (G*) of SSP in the high temperature zone. This result suggested that SSP thermal gelation be possibly interfered by the positive charges of amino group of chitosan molecule. Regardless of degree of deacetylation, increasing chitosan concentration caused stronger interference on SSP gelation and lowered G*. The tan δ (loss tangent) of chitosan/SSP gel decreased with increasing heating temperature. At the end of heating cycle (75℃), tan δ of chitosan/SSP gel was higher than that of SSP alone. Higher level (1.5%) of dd 99 chitosan, low in amount of acetyl amino group, had the lowest G* which possibly resulted from the ionic interaction with SSP.
Increased viscosity was noted for chitosan solution adjusted to pH 3 comparing with chitosan solution prior to pH adjustment. Higher chitosan concentration (at pH 3) resulted in higher G* or gel elasticity of chitosan/SSP mixture. This could be probably attributed to increased ionic interaction between chitosan and SSP, thus enhanced thermal gelation in low temperature zone. Therefore, higher numbers of positive charge for dd 99 chitosan (at pH 3) was shown to have stronger ionic interaction and gel elasticity. Viscosity of chitosan solution at pH 5 was shown to be lower than that of chitosan solution before adjusting pH. Regarding the same degree of deacetylation, increased chitosan level (at pH 5) reduced G* of chitosan/SSP mixture. Contrast to chitosan solution at pH 3, dd 99 possessed less amounts of positive charge which interfered SSP thermal gelation at high temperature zone through the formation of hydrogen bonding.
SDS-PAGE results from chitosan/SSP gel following 8M urea treatment revealed large protein molecule (> 200 KDa) aggregation in the stacking gel, which indicated formation of new covalent linkages between chitosan and SSP into chitosan/SSP polymer. Electrophretogram from dd 50 also showed disappearing myosin heavy chain (MW 200 KDa) and actin (MW 45 KDa) protein bands that resulted from formation of chitosan/SSP polymer. Intensities or concentration of large chitosan/protein polymers for chitosan solution at either pH 3 or 5 were less, due to changes in the numbers of positive charge, than that of chitosan solution before pH adjustment.
Key words:
頁次
中文摘要………………………………………………………………Ⅰ
英文摘要………………………………………………………………Ⅲ
謝 誌…………………………………………………………………V
目 錄…………………………………………………………………VI
表目錄…………………………..………………………………………X
圖目錄..…………………………………………………………………XI
第一章前 言…………………………………………………………1
第二章文獻回顧………………………………………………………3
一、幾丁質及幾丁聚醣之來源、分佈、化學構造及應用………3
(一)幾丁質(chitin)………………………………………3
(二)幾丁聚醣(chitosan)…………………………………3
二、幾丁質及幾丁聚醣之理化性質……………………………6
(一)幾丁質…………………………………………………..6
(二)幾丁聚醣………………………………………………..7
(三)聚陽離子性質(polycationic properties)…………….8
三、幾丁質與幾丁聚醣之製備…………………………………...8
(一)幾丁質之製備…………………………………………..8
1.鈣鹽之去除……………………………………………….8
2.蛋白質之去除…………………………………………….8
(二)幾丁聚醣之製備………………………………………10
四、幾丁質與幾丁聚醣的應用………………………………….10
(一)廢水處理………………………………………………10
(二)生化方面………………………………………………13
(三)食品方面………………………………………………13
1.抗菌作用…………………………………………..13
2.膳食纖維…………………………………………..13
3.保水與乳化作用…………………………………..16
4.香味料……………………………………………..16
5.抗氧化作用………………………………………..16
6.其他食品上的應用………………………………..17
五、蛋白質的凝膠機制………………………………………….17
六、鹽溶性肌原纖維蛋白質的熱凝膠特性…………………….19
七、溫度和pH值對鹽溶性蛋白質熱凝膠的影響……………...21
八、多醣類混合系統之凝膠機制……………………………….22
九、添加多醣類膠體對鹽溶性蛋白質熱凝膠的影響………….24
第三章研究目的………………………………………………………29
第四章材料與方法……………………………………………………30
一、實驗材料…………………………………………………….30
二、實驗方法…………………………………………………….30
(一)幾丁聚醣溶液之製備…………………………………30
(二)快速黏度之測定………………………………………31
(三)豬肉鹽溶性蛋白質的萃取……………………………31
(四)蛋白質含量測定………………………………………32
(五)動態流變測定…………………………………………32
(六)十二基硫酸鈉-聚丙烯醯胺膠體電泳
(SDS-PAGE)……………………………………………34
1.試藥配置………………………………………….34
(1)Lower buffer(分離膠體緩衝液(separating
gel buffer))…………………………………34
(2)Upper buffer(焦集膠體緩衝液(stacking
gel buffer))…………………………………34
(3)丙烯醯胺液……………………………………34
(4)電泳槽緩衝液(0.192 M Glycine)………35
(5)樣品處理液(sample buffer)………………35
(6)10 ﹪過硫酸銨溶液(ammonium persulfate
;APS)…………………………………….35
(7)蛋白質分子量標準品…………………………35
(8)0.2 ﹪蛋白質染色液(staining solution)…….35
(9)脫色液(destaining solution)……………….35
(10)7.5 ﹪醋酸溶液……………….…………….36
2.鑄膠操作…………………………………………..36
3.樣品處理…………………………………………..36
4.電泳操作…………………………………………..37
第五章結果與討論……………………………………………………40
一、去乙醯度對幾丁聚醣溶液的影響………………………….40
(一)pH值…………………………………………………...40
(二)黏度……………………………………………………40
二、幾丁聚醣與肌原纖維蛋白質混合系統之流變特性……….44
(一)肌原纖維蛋白質之加熱凝膠特性……………………44
(二)幾丁聚醣與肌原纖維蛋白質混合系統的凝膠特性…46
三、以SDS-PAGE觀察幾丁聚醣對肌原纖維蛋白質加熱凝
膠的影響……………………………………………………53
四、不同pH值之幾丁聚醣與肌原纖維蛋白質混合系統之
流變特性……………………………………………………58
(一)黏度……………………………………………………58
(二)pH 3之幾丁聚醣與肌原纖維蛋白質混合系統的凝
膠特性…………………………………………………64
(三)pH 5之幾丁聚醣與肌原纖維蛋白質混合系統的凝
膠特性…………………………………………………69
五、以SDS-PAGE觀察不同pH值之幾丁聚醣對肌原纖維
蛋白質加熱凝膠的影響……………………………………74
(一)pH 3之幾丁聚醣對肌原纖維蛋白質的影響…………74
(二)pH 5之幾丁聚醣對肌原纖維蛋白質的影響…………78
第六章結 論…………………………………………………………85
第七章參考文獻………………………………………………………87
方紹威:幾丁質及幾丁聚醣在廢水處理、生化、食品和醫藥上之研究發展現況。藥物食品檢驗局調查研究年報,8:20-30(1990)。
李桂雲、黃彥琪、蔡正宗、紀學彬:N-甲基幾丁聚醣(NCMC)螯合鐵離子及在煮熟含鹽豬肉之抗氧化性探討。食品科學,23:608-61(1996)。
李勳宜:草蝦幾丁聚醣之製備及其應用研究。國立台灣大學食品科技研究所碩士論文,台北市(1988)。
阮進惠、林翰良、羅淑珍:幾丁聚醣水解物之連續式生產及其抑菌作用。中國農業化學誌,35:596-611(1997)。
板井和男:キチン·キトサオリユ糖の開發と現狀。New Food Industry,31:17-25(1989)。
林欣榜:幾丁類物質在食品加工上之應用。食品工業,31:26-37(1999)。
林俊煌:不同去乙醯程度之幾丁聚醣的流變性質與鏈柔軟度對膜之物理特性的關係。碩士論文。海洋大學水產食品科學研究所,基隆市,台灣(1992)。
宮尾茂雄:キトサンの基礎と應用。防菌防霉,23:421(1995)。
陳美惠、莊淑惠、吳志津:幾丁聚醣的物化特性。食品工業,31:1-6(1999)。
黃建嘉、李錦楓:幾丁聚醣對豬肉鹽溶性蛋白質熱凝膠的影響。食品科學,25:150-162(1998)。
劉瓊淑:幾丁質、幾丁聚醣及其相關酵素之特性與應用。食品工業,26:26-36(1994)。
Bertazzon A, Tsong TY. 1989. High-resolution differential scanning calorimetric study of myosin, functional domains, and supramolecular structures. Biochem 28(20):9784-9790.
Berth G, Dautzenbery H, Peter MG. 1998. Physico-chemical charactetization of chitosan varing in degree of acetylation. Carbohydr Polym 36:205-216.
Bough WA. 1975a. Coagulation with chitosan - an aid to recovery of by-product from egg breaking wastes. Poultry Sci 54(6):1904-1912.
Bough WA. 1975b. Reduction of suspended solids in vegetable canning waste effluents by coagulation with chitosan. J Food Sci 40(2):297-301.
Bough WA, Landes DR. 1976. Recovery and nutritional evaluation of proteinaceous solids separated from whey by coagulation with chitosan. J Dairy Sci 59(11):1874-1880.
Bough WA, Landers DR. 1978. Treatment of food processing wastes with chitosan and nutritional evaluation of coagulated by-products. In: Muzzarelli RAA, Pariser ER, editors. Proceedings of the 1st International Conference on Chitin/Chitosan. MIT Sea Grant Program, Cambridge, Mass., U.S.A.
Brine CJ, Austin PR. 1981. Chitin variability with species and method of preparation. Comb Biochem Physiol 68:283-291.
Cairns P, Miles MJ, Morris VJ, Brownsey GJ. 1987. X-ray fiber-diffraction studies of synergistic, binary polysaccharide gels. Carbohydr Res 160:411-423.
Carpenter JA, Saffle RL. 1964. A simple method of estimating the emulsifying capacity of various sausage meats. J Food Sci 29(3):774-781.
Chen RH, Lin JH, Yang MH. 1994. Relationships between the chain flexibilities of chitosan molecules and the physical properties of their casted films. Carbohydr Polym 24(1):41-46.
Clark AH. 1992. Gels and gelling. In: Hartel RW, Schwartzberg HG, editors. Physical Chemistry of Food. New York: Marcel Dekker, Inc. p 263-305.
Clark AH, Ross-Murphy SB. 1987. Structure and mechanical properties of biopolymers gels. Adv Polym Sci 83:57-192.
Curotto E, Aros F. 1993. Quantitative determination of chitosan and the percentage of free amino groups. Anal Biochem 211:240-241.
Darmadji P, Izumimoto M. 1994. Effect of chitosan in meat preservation. Meat Sci 38(2):243-254.
Doi E. 1993. Gels and gelling of globular proteins. Trends Food Sci Technol 4:1-5.
Egbert WR, Huffman DL, Chen CM, Dylewski DP. 1991. Development of low-fat ground beef. Food Technol 45(6):64-73.
Enomoto M, Hashimoto M, Kuramae T, Kanno M. 1992. Low molecular weight chitosan as anticholesterolemic. Japan Kokai Tokyo Koho JP04, 108, 734. CA117:104268.
Foegeding EA, Ramsey SR. 1986. Effect of gums on low-fat meat batters. J Food Sci 51(1):33-46.
Gamzazade AI, Sklysar AM, Pavlova SSA, Rogozhin SV. 1981. On the viscosity properties of chitosan solutions. Polym Sci U.S.S.R. 23:665.
Hill HD, Straka JG. 1988. Protein determination using bicinchoninic acid in the presence of sulfhydryl reagents. Anal Biochem 170:203-208.
Imeri AG, Knorr D. 1988. Effects of chitosan on yield and compositional data of carrot and apple juice. J Food Sci 53(6):1707-1709.
Imeson AP, Ledward DA, Mitchell JR. 1977. On the nature of the interaction between some anionic polysaccharides and proteins. J Sci Food Agric 28(8):661-668.
Knorr D. 1982. Functional properties of chitotin and chitosan. J Food Sci 47(2):593-595.
Knorr D. 1984. Use of chitinous polymers in food. Food Technol 38(1): 85-89, 92-97.
Kurita K, Sannan T, Iwakura K. 1977. Studies on chitin, 4: evidence for formation of block and random copolymers of N-acetyl-D-glucosamine and D-glucosamine by hetero- and homogenous hydrolysis. Macromol Chem 178:3197-3202.
Launary B, Doublier JL, Cuverlir G. 1986. Flow properties of aqueous solution and dispersion of polysaccharides. In: Mitchell JR, Ledward DA, editors. Functional Properties of Food Macromolecules. Gaithersburg, Maryland: Elsevier Applied Sci p348-368.
Lee SH. 1996. Effect of chitosan on emulsifying capacity of egg yolk. J Korean Soc Food Nutr 25(1):215-222.
Li-Chan E, Nakai S, Wood DF. 1984. Hydrophobicity and solubility of meat proteins and their relationship to emulsifying properties. J Food Sci 49(1): 345-350.
Lower ES. 1984. Polymers from the sea chitin and chitosan ( II ). Manufacturing Chemistry Oct 47, 49, 52.
Maezaki Y, Tsuji K, Nakagawa Y, Kawai Y, Akimoto M, Tsugita T, Takekawa W, Terada A, Hara H, Mitsuoka T. 1993. Hypocholesterolemic effect of chitosan in adulte males. Biosci Biotech Biochem 57(9):1439-1444.
Moore KJ, Johnson MG, Sistrunk WA. 1987. Effect of polyelectrolyte treatments on waste strength of snap and dry bean wastewaters. J Food Sci 52(2):491-492.
Morris VJ. 1986. Multicomponents gels. In: Phillips GO, Wedlock DJ, Williams PA editors. Gums and Stabilizers for Food Industry 3, New York: Elsevier Applied Science. p87-99.
Muzzarelli RAA. 1985. Determination of the degree of acetylation of chitosan by first derivative ultraviolet spectrometry. Carbohydr Polym 5(3):461-463.
Nauss JL, Nagyvary J. 1983. The binding of micellar lipids to chitosan. Lipids 18(10):714-719.
Oakenfull DG, Scott A. 1988. Size and stability of junction zone in gels of iota and kappa carrageenan. In: Phillips GO, Williams PA, Wedlock DJ, editors. Gums and Stabilisers for the food industry. 4thed. Washington DC: IRLpress.p 127-134.
Parker A, Brigand G, Miniou C, Trespoey A, Vallee P. 1993. Rheology and fracture of mixed ι-and κ-carrageenan gels: two-step gelation. Carbohydr Polym 20:253-262.
Poole S. 1988. The foam enhancing properties of low-viscosity chitosan. Advance in Chitin and Chitosan, London, UK: Elsevier Applied Sci p523-529.
Poole S. 1989. The foam-enhancing properties of basic biopolymers. Int J Food Sci Technol 24:121.
Purnama D, Izumimoto M. 1994. Effect of chitosan in meat preservation. Meat Sci 38(2):243-254.
Ravindra R, Krovvidi KR, Khan AA. 1998. Solubility parameter of chitin and chitosan. Carbohydr Polym 36(2):121-127.
Roberfroid M. 1993. Dietary fiber, inulin and oligofructose: a review comparing their physiological effects. Crit Rev Food Sci Nutr 33(2):103-148.
Rodríguez-Hernández AI, Tecante A. 1999. Dynamic viscoelastic behavior of gellanι-carrageenan and gellan-xanthan gels. Food Hydrocoll 13:59-64.
Samejima K, Ishioroshi M, Yasui T. 1981. Relative roles of head and tail portions of the molecule in heat-induced gelation of myosin. J Food Sci 46(5):1410-1411.
Samules RJ. 1981. Solid state characterization of structure of chitosan film. J Polym Sci Polym Physiol 19(6):1081-1093.
Sano T, Noguchi SF, Matsumoto JJ, Tsuchiya T. 1990. Thermal gelation characteristics of myosin subfragements. J Food Sci 55(1):55-58.
Shahidi F, Vidana Arachchi JK, Jeon YJ. 1999. Food applications of chitin and chitosan. Trends Food Sci Technol 10(2):37-51.
Shimada K, Fujikawa K, Yahara K, Nakamura T. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem 40(6): 945-948.
Smith DM. 1994. Protein interactions in gels: Protein-protein interactions. In: Hettiarachchy NS, Ziegler GR, editors. Protein Functionality in Food Systems. New York: Marcel Dekker, Inc. p209-224.
Squire JM, Luther PK, Morris EP. 1990. Organization and properties of the striated muscle sarcomere. In: Squire JM, editor. Molecular Mechanisms of Muscular Contraction. CRC Press, Boca Raton, FL:CRC Press p1-48.
Sudarshan NR, Hoover DG, Knorr D. 1992. Antibacterial action of chitosan. Food Biotech 6(3):257.
Trout GR, Chen CM, Dale S. 1990. Effect of calcium carbonate and sodium alginate on the textural characteristics, color and color stability of restructured pork chops. J Food Sci 55(1):38-42.
Ustunol Z, Xiong YL, Means WJ, Decker EA. 1992. Forces involved in mixed pork myofrillar protein and calcium alginate gels. J Agric Food Chem 40(4):577-580.
Ventura P. 1996. Lipid lowering activity of chitosan, a new dietary integrator. In: Muzzarelli RAA, editor. Chitin Enzymology, Ancon, Italy: Atec Edizioni p322-336.
Wallingford L, Labuza TP. 1983. Evaluation of the water binding properties of food hydrocolloids by physical/chemical methods and in a low fat meat emulsion. J Food Sci 48(1):1-5.
Wang CH, Damodaran S. 1991. Thermal gelation of globular proteins: Influence of protein conformation on gel strength. J Agric Food Chem 39(3):433-438.
Wang GH. 1992. Inhibition and inactivation of five species of foodborne pathogens by chitosan. J Food Prot 55(11): 916-919.
Wang SF. 1993. Gelation properties of chicken breast muscle myosin. Ph. D. dissertation, Michigan State University, East Lansing.
Wang SF, Smith DM, Steffe JF. 1990. Effect of pH on the dynamic rheological propecties of chicken breast salt-soluble proteins during heat-induced gelation. Poultry Sci 69:2220-2233.
Wang SF, Smith DM. 1992. Functional properties and microstructure of chicken breast salt soluble protein gels as influenced by pH and temperature. Food Structure 11(3):273-285.
Whiting RC, 1984. Addition of phosphates, proteins, and gums to reduced-salt frankfurter batters. J Food Sci 49(5):1355-1357.
Xiong YL, Blanchard SP. 1993. Viscoelastic properties of myofibrillar protein-polysaccharide composite gels. J Food Sci 58(1):164-167.
Xiong YL, Brekke CJ. 1989. Changes in protein solubility and gelation properties of chicken myofibrils during storage. J Food Sci 54(5):1141-1146.
Ziegler GR, Foegeding EA. 1990. The gelation of proteins. Adv Food Res 34:203-298.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 林欣榜:幾丁類物質在食品加工上之應用。食品工業,31:26-37(1999)。
2. 陳美惠、莊淑惠、吳志津:幾丁聚醣的物化特性。食品工業,31:1-6(1999)。
3. 黃建嘉、李錦楓:幾丁聚醣對豬肉鹽溶性蛋白質熱凝膠的影響。食品科學,25:150-162(1998)。
4. 劉瓊淑:幾丁質、幾丁聚醣及其相關酵素之特性與應用。食品工業,26:26-36(1994)。
5. 何榮桂、郭再興(民85)。多媒體電腦輔助教學在網路上的發展趨勢。資訊與教育,55,25-31頁。
6. 邱天助(民84)。電訊網路與終生教育的發展。教學科技與媒體,20,10-15頁。
7. 林奇賢(民86)。全球資訊網輔助學習系統─網際網路與國小教育。資訊與教育,58,pp2-9。
8. 周倩、孫春在(民85)。遠距合作學習環境之設計與建立:CORAL經驗。教學科技與媒體,26,13-21頁。
9. 林進材(民87)。學習自主權─自我導向學習理論在教學上的意義。國教之友,50(2),13-20頁。
10. 孫春在(民84)。超媒體網路與遠距合作式電腦輔助學習。教學科技與媒體,21,pp29-37。
11. 陳年興(民87)。全球資訊網整合式學習環境Web-based Learning Environment。資訊與教育,64,2-13頁
12. 黃明月(民87)。隔空教育中教學互動方法之探討。社會教育學刊,21,209-231頁。
13. 張秀雄(民82)。發展自我導向學習能力的途徑。成人教育,15,33-39頁。
14. 張秀雄(民83)。自我導向學習初探。成人教育,17,42-48頁。
15. 楊家興(民84)。隔空教育下的傳播科技:新舊教學媒體的省思。教學科技與媒體,21,5-12頁