(3.238.7.202) 您好!臺灣時間:2021/03/04 03:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡帛娟
論文名稱:安非他命對離子管道型受器功能之影響
論文名稱(外文):Effects of amphetamine on the functional activities of ion channel-type receptors
指導教授:劉佩珊劉佩珊引用關係
指導教授(外文):Pei-San Liu
學位類別:碩士
校院名稱:東吳大學
系所名稱:微生物學系
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:89
語文別:中文
論文頁數:1
中文關鍵詞:安非他命受器
外文關鍵詞:amphetaminereceptor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:92
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
在此篇論文中,我們以牛腎上腺髓質嗜鉻細胞和老鼠腎上腺髓質嗜鉻細胞研究安非他命對鈣訊及分泌的影響。在牛腎上腺髓質嗜鉻細胞上,安非他命可自身引起鈣訊及抑制DMPP所引起之鈣訊,但對於高鉀所引起之鈣訊只有少許影響。Norepinephrine transporter (NET)的抑制劑nomifensine可抑制1,1-Dimethyl-4-phenyl-piperazinium iodide (DMPP) 所引起之鈣訊及高鉀所引起之鈣訊。我們推論在牛腎上腺髓質嗜鉻細胞上,安非他命和nomifensine對受器連結鈣訊之影響是經由不同路徑影響,nomifensine的抑制作用是由抑制膜電位敏感型鈣通道而抑制,但安非他命的抑制作用不是經由這條路徑影響。在PC12細胞上,安非他命,nomifensine及dopamine transporter的抑制劑GBR-12909皆可抑制ATP所引起之鈣訊及高鉀所引起之鈣訊。我們推論在老鼠腎上腺髓質嗜鉻細胞上,這些藥物皆有一些類似的化學特性,是經由類似的路徑-由抑制膜電位敏感型鈣通道進而抑制受器連結之鈣訊,且於無鈣的緩衝液中,因無法測到P2Y受器聯結之鈣訊,故我們推論安非他命其抑制作用主要是影響P2X受器。有趣的是,當細胞用DMPP及安非他命長期處理後,皆會增加尼古丁受器的功能,但對P2-purinoceptor受器的功能影響較小。我們的實驗結果顯示安非他命是經由不同路徑對尼古丁受器及P2-purinoceptor受器造成影響。

Abstract
Effects of amphetamine on calcium fluxes and secretion in bovine adrenal chromaffin cells and PC12 cells were investigated. Amphetamine induced a calcium rise ( by itself ) and blocked the 1,1-Dimethyl -4-phenyl -piperazinium iodide (DMPP) -induced [Ca2+]i rise, yet have very little effects on the high K+-induced [Ca2+]i rise in bovine chromaffin cells. Nomifensine, a Norepinephrine transporter (NET) inhibitor, suppressed both DMPP- and high K+-induced [Ca2+]I rise. We suggest that amphetamine and nomifensine addressed different effects on stimulation coupled calcium signal in bovine cells, the blockage of nomifensine was through its blockage of voltage -sensitive calcium channels yet it is not the case of amphetamine. In PC12 cells, amphetamine, GBR12909 and nomifensine all blocked the ATP- and high K+-induced [Ca2+]i rise. We suggest they all share some similar chemistry character, thus to suppress stimulation coupled calcium signals in PC12 cells by a similar pathway-- voltage-sensitive calcium channels. Since P2Y coupled calcium signals cannot be measured in a calcium free buffer, we suggest that the partially blockage effects of amphetamine is mainly on P2X purinoceptors. Interestingly, chronic treatment of either DMPP or amphetamine successfully promoted the function of nicotinic receptors, yet with little influence to P2 purinoceptors. We conclude that amphetamine address different effects on nicotinic receptors and P2X purinoceptors.

目 錄
頁次
目錄……………………………………………………………...I
圖表目錄…………………………………………………….….II
中文摘要……………………………………………………….IV
英文摘要…………………………………………………….….V
壹、前言………………………………………………………...1
貳、前人文獻回顧……………………………………………...3
(一)安非他命的簡介…………………………………...3
(二)細胞膜上的受器………………………………..….9
參、材料與方法
  (一)藥品……………………………………………….16
  (二)溶液配方………………………………………….16
  (三)方法……………………………………………….19
肆、結果……………………………………………………….24
伍、討論……………………………………………………….33
陸、參考文獻………………………………………………….40
柒、圖表……………………………………………………….45

參考文獻
Akaike, N., Furukawa, K., Kogure, K.1993. Rolipram enhances the development of
voltage-dependent Ca super(2+) current and serotonin-induced current in rat
pheochromocytoma cells. Brain. 620, 58-63.
Amara, S. G., and Kahar, M. J. 1993. Neurotransmitter transporters. Annu. Rev. Neurosic. 16, 73-93.
Arslan, G, et al., 2000. P2Y receptors contribute to ATP-induced increase in
intracellular calcium in differentiated but not undifferentiated PC12 cells.
Neuropharmacology, 39, 482-496.
Barnard,-E.A.; Simon,-J.; Webb,-T.E.1997. Nucleotide receptors in the nervous
system: An abundant component using diverse transduction mechanisms
Mol. Neurobiol. 15, 103-130.
Beckstead, R., Domesick, V.B., Navta, W. J. H. 1979. Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Res. 175, 191-217.
Bencherif, M., Lovette, M.E., Fowler, K.W., Arrington, S., Reeves, L., Caldwell, W.S., Lippiello, P.M. 1996. RJR-2403: A nicotinic agonist with CNS selectivity I. In vitro characterization. J. Pharmacol. Exp. 279, 1413-1421.
Bradford, M. 1976. Arapid and sensitive method for the quantitation of microgram
quantities of protein utilizing the principle of protein-dye binding. Anal.
Biochem. 72, 248-254.
Carboni, E., Imperato, A., Perezzani, L., Di-Chiara, G. 1989. Amphetamine, cocaine, phencyclidine and nomifensine increase extracellular dopamine concentrations preferentially in the nucleus accumbens of freely moving rats. Neuroscience. 28, 653-661.
Castro, E., OSET-Gasque, M.J., Canadas, S., Gimenez, G., and Gonzalez, M. P. 1988.
GABAA and GABAB Sites in Bovine Adrenal Medulla Membranes. J. Neuro. Res. 20, 241-245.
Charest, R., Blackmore, P. F., and Exton, J. H. 1985. Characterization of responses of
isolated rat hepatocytes to ATP and ADP. J. Biol. Chem. 260, 15789-15797.
Connor, T. J., Kelly, J. P., Leonard, B. E. 2000. An assessment of the acute effects of
the serotonin releasers methylenedioxy-methamphetamine, methylenedioxy
-amphetamine and fenfluramine on immunity in rats. Immunopharmacology. 46, 223-235.
Criado, M., Alamo, L. and Navarro, A., 1992. Primary structure of an agonist binding
subunit of the nicotinic acetylcholine receptor from bovine adrenal chromaffin
cells. Neurochem. Res. 17, 281-287.
Duvoisin, R. M., Deneris, E. S., Patrick, J., and Heinemann, S. 1989. The functional diversity of the neuronal nicotinic acetylcholine receptors is increased by a novel subunit: beta 4. Neuro. 3(4): 487-496.
Eric, A., Barnard. 1992. Receptor classes and the transmitter-gated ion channels.
Trends in Biochemical Science. 17, 367-374.
Fallon, J. H., Koziell, D. A., Moore, R. Y. 1978. Catecholamine innervation of the
basal forebrain. II,III,IV. J. Comp. Neurol. 180, 509-532.
Fasolato, C., Pizzo, P., and Pozzan, T. 1990. Receptor-mediated calcium influx in
PC12 cells. J. Biol. Chem. 265, 20351-20355.
Fischer, J. F., and A. K. Cho. 1979. Chemical release of dopamine from striatal
homogenates: evidence for an exchange diffusion model. J. Pharmacol. Exp.
Ther. 208, 203-209.
Folk, G. E., J., Long, J.P. 1988. Serotonin as a neurotransmitter: A review.Comp.
Biochem. Physiol. 9 , 251-257.
Fung, Y. K., .Lau, Y. S. 1992. Chronic effects of nicotine on mesolimbic
dopaminergic system in rats. Pharmacol. Biochem. Behav. 41, 57-63.
Gallo, V., Pende, M., Scherer, S., Molne, M., Wright, P. 1995. Expression and
regulation of kainate and AMPA receptors in uncommitted and committed neural
progenitors. Neurochem.Res. 5, 549-560.
Gopalakrishnan, M., Molinari, E.J., Sullivan, J.P. 1997. Regulation of human alpha
4 beta 2 neuronal nicotinic acetylcholine receptors by cholinergic channel ligands
and second messenger pathways. Mol. Pharmacol. 52, 524-534.
Grynkiewicz, G., Poenie, M., and Tsien, R. Y. 1985. A new generation of Ca2+ inducators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440-3450.
Hakki, A., Hallquist, N., Friedman, H., Pross, S. 2000. Differential impact of nicotine on cellular proliferation and cytokine production by LPS-stimulated murine splenocytes. Int. J. Immunopharmacol. 22, 403-410.
Henderson, L.P., Gdovin, M.J., Liu, ChunLei., Gardner, P.D. Maue, R. A. 1994.
Nerve growth factor increases nicotinic ACh receptor gene expression and
current density in wild-type and protein kinase A-deficient PC12 cells.
J. Neur osci. 14, 1153-1163.
Hoffman, A. F., and Gerhardt, G. A. 1998. In vivo electrochemical studies of
dopamine clearance in the rat substantia nigra: (net transporter nom)Effects of
locally applied uptake inhibitors and unilateral 6-hydroxydopamine lesions. J.
Neurochem. 70, 179-189.
Huang, C. M., and Kao, L. S. 1996. Nerve growth factor, epidermal growth factor,
and insulin differentially potentiate ATP-induced [Ca2+]irise and dopamine
secretion in PC12 cells. J. Neurochem. 66, 124-130.
Johnson, R. G. 1988. Accumulation of biological amines into chromaffin granules: a model for horomone and neurotransmitter transporter. Physiol. Rev. 68, 232-307.
King, B. F., Ziganshina, L. E., Pintor, J., and Burnstock, G. 1996. Full sensitivity of
P2X2 purinoceptor to ATP revealed by changing extracellular Ph. Bu. J.
Pharmacol. 117, 1371-1373.
Liang, N. Y., and Rutledge, C. O. 1982. Comparison of the release of [3H] dopamine from isolated corpus striatum by amphetamine, fenfluramine and unlavelled dopamine. Biochem. Pharmacol. 31, 983-992.
Liu, P. S., Lin, Y. J., and Kao, L. S. 1995. Effects of caffeine on Ca2+ fluxes and
secretion in bovine chromaffin cells. Eur. J. Pharmacol. 291, 265-272.
McEvoy, G. K. 1986. Drug information. The Merck index 10th Edition. p852.
Milner, T.A., Joh, T.H., Pickel, V.M. 1986. Tyrosine hydroxylase in the rat parabrachial region: Ultrastructural localization and extrinsic sources of immunoreactivity. J. Neurosic. 6, 2585-2603.
Miyamoto, J.K., Uezu, E., Jiang, P. J., Miyamoto, A.T. 1993. H super(+)-ATPase and transport of DOPAC, HVA, and 5-HIAA in monoamine neurons. Physiol. Behav. 53, 65-74.
Moore, R. Y., Bloom, F. E. 1979. Central catecholamine neuron system: anatomy and
physiology of the norepinephrine and epinephrine system. Annu.Rev. Neurosci.
2, 118-168.
Morita , S. M., Dohi , T., and Tsujimoto ,A., 1990. GABAergic modulation of
catecholamine release from cultured bovine adrenal chromaffin cells. Evidence
for the involvement of Cl--dependent Ca2+ entry. Naunyn-Schmiedeberg’s Arch
Pharmacol. 341, 419-424.
Peter, D., Jimenez, J., Liu, Yongjian., Kim, J., and Edwards, R.H. 1994. The chromaffin granule and synaptic vesicle amine transporters differ in substrate recognition and sensitivity to inhibitors. J. Biol. Chem. 269, 7231-7237.
Roehm, N. W., Rodgers, G. H., Hatfield, S. M., and Glasebrook, A. L. 1991. An
improved colorimetric assay for cell proliferation and viability utilizing the
tetrazolium salt XTT. J. Immunol. Methods. 142, 257-265.
Schuller, H. M. 1997. Neurotransmitter receptors and lung cancer. Symposium on
Mechanisms of Toxicity, np, 8-10.
Seiden, L.S., Sabol, K.E., Ricaurte, G. A. 1993. Amphetamine: Effects on catecholamine systems and behavior. Annu. Rev. Pharmacol. Toxicol. 33, 639-677.
Silinsky, E. M., and Ginsborg, B. L. 1983. Inhibition of acetylcholine release from
preganglionic frog nerves by ATP but not adenosine. Nature. 305, 327-328.
Skau, K. A., and Gerald, M. C. 1977. Amphetamine inhibition of alpha-bungarotoxin
binding at the mouse neuromuscular junction. Life Sci. 20, 1495-1499.
Smit, M. J., Leurs, R., Bloemers, M. S., Tertoolen, L. G., Bast, A., Laat, S. W., and
Timmerman, H. 1993. Extraellular ATP elevates cytoplasmatic free Ca2+ in
HeLa cells by the interaction with a 5’-nucleotide receptor. Eur. J. Pharmacol.
247, 223-226.
Snyder, S. H., S. P. Bnagerjee, H. I. Yamamura, and D. Dreenberg. 1974. Drugs, neurotransmitters, and schicophrenia. Science. 184, 1243-1253.
Spitzmaul, G.F., Esandi, M. del C. and Bouzat, C. 1999. Amphetamine acts as a
channel blocker of the acetylcholine receptor. Neuroreport 10, 2175-2181.
Warpman, U., Friberg, L.,Gillespie, A., Hellstroem-Lindahl, E., Zhang, Xiao.,
Ordberg, A. 1998. Regulation of nicotinic receptor subtypes following chronic nicotinic agonist exposure in M10 and SH-SY5Y neuroblastoma cells. J.
Neurochem. 70, 2028-2037.
Wilson, S. P. 1987. Purification of adrenal chromaffin cells on Renografin gradients. J. Neurosci. Methods. 19, 163-171.
Winkler, H., Sietzen, M., and Schober, M. 1987. The life cycle of catecholamine
-storing vesicles. Ann. NY Acad. Sci. 483, 3-19.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔