|
References [1] F. Giannessi, Theorem of the Alternative, Quadratic Programs, and Complementarity Programs, Variational Inequalities and Complementarity Problems, Edited by R. W. Cottle, F. Giannessi, and J. L. Lions, Wiley, New York, pp. 151-186, 1980. [2] G. Y. Chen, and G. M. Cheng, Vector Variational Inequalities and Vector Optimization, In Lecture Notes in Economics and Mathematical Systems, Springer Verlag, Heidelberg, Germany, Vol. 258, 1987. [3] G. Y. Chen, and B. D. Craven, Approximate Dual and Approximate Vector Variational Inequality for Multiobjective Optimization, J. Austral. Math. soc. (Series A) 47, 418-423, 1989. [4] G. Y. Chen, and B. D. Craven, A vector variational inequality and optimization over an efficient set, Zor-Meth. and Models. of Operatons Research 34, 13-27, 1990. [5] G. Y. Chen and X. Q. Yang, The Vector Complementarity Problem and Its Equivalence With The Weak Minimal Element in Ordered Sets, J. Math. Anal. Appl. 153, 136-158, 1990. [6] G. Y. Chen, Existence of Solutions for a vector variational inequality: An extension of Hartman-Stampacchia theorem, J. Optim. Th. Appl. 74 (3), 445-456, 1992. [7] G. Y. Chen, and S.J. Li, Existence of Solutions for a generalized vector quasivariational inequalies, J. Optim. Th. Appl. 90 (3), 321-334, 1996. [8] G. M. Lee, D.S. Kim, B.S. Lee and S.J. Cho, Generalized vector variational inequality and fuzzy extension, Appl. Math. Lett. 6 (2), 47-51, 1993. [9] G. M. Lee, B.S. Lee and S.-S. Chang, On vector quasivariational inequalities, J. Math. Anal. Appl. 203, 626-683, 1996. [10] G. M. Lee, D.S. Kim, B.S. Lee, Generalized vector variational inequality, Appl. Math. Lett. 9 (1), 39-42, 1996. [11] S. J. YU, and J. C. YAO, On vector variational inequalities, J. Optim. Th. Appl. 89 (3), 749-769, 1996. [12] G. M. Lee, D.S. Kim, B.S. Lee, G. Y. Chen, Generalized vector variational inequality and it's duality for set-valued maps, Appl. Math. Lett. 11 (4), 21-26, 1998. [13] George Xian-Zhi Yuan, KKM Theory and Applications in Nonlinear Analysis, Marcel Dekker, Inc., New York, 1999. [14] Kim C. Border, Fixed Point Theorems with Application to Economics and Game Theory, New York: Cambridge University Press, 1985.
|