|
[1]林信成、彭啟峰,Oh ! Fuzzy 模糊理論剖析,第三波文化事業股份有限公司,1994。 [2]張兆旭,Fuzzy淺談,松崗電腦圖書資料股份有限公司,1993。 [3]蘇木春,機器學習類神經網路、模糊系統以及基因演算法則,全華出版社,1997。 [4]蘿珊智慧型科技工作室,MATLAB入門及應用,松崗電腦圖書資料股份有限公司,1999。 [5]張智星,MATLAB程式設計與應用,清蔚科技出版事業部,2000。 [6]Aggarwal, A. and J. K. Park, “Improved algorithms for economic lot-size problems”, Operations Research 41, pp.549-571, 1993. [7]Arkin, E., D. Joneja, and R. Roundy, “Computational complexity of uncapacitated multi-echelon production planning problems”, Operations Research Lerrers 8, pp.61-66, 1989. [8]Axsater, s., “an extension of the extended basic period approach for economic lot scheduling problem”, Journal of Optimization Theory and Applications 52, pp.179-189, 1987. [9]Bahl, H. C., L. P. Ritzman, and J. N. D. Gupta, “Determining lot sizes and resource requirements: a review”, Operation Research Vol. 35, No. 3, pp.329-345, 1987. [10]Barany, I., T. J. Roy, and L.A. Wolsey, “Strong formulations for multi-item capacitated lotsizing”, Management Science 30, pp.1255-1261, 1987. [11]Barbarosoglu, G. and L. Ozdamar, “Analysis of solution space-dependent performance of simulated annealing : the case of the multi-level capacitated lot sizing problem”, Computer & Operations Research 27, pp.895-903, 2000. [12]Bitran, G. R. and H. Matsuo, “Approximation formulations for the single-product capacitated lot size problem”, Operations Research 34, pp.63-74, 1986. [13]Bitran, G. R. and H. H. Yanasse, “Computational complexity of the capacitated lot size problem”, Management Science 28, pp.1174-1186, 1982. [14]Boctor, F. F., “The two-product, single-machine, static demand, infinite horizon lot scheduling problem”, Management Science 28, 1982. [15]Boctor, F. F., “The G-group Heuristic for single machine lot scheduling”, International Journal of Production Research Vol. 25, No. 3, pp. 363-379, 1987. [16]Bomberger, E. E., “A dynamic programming approach to a lot size scheduling problem”, Management Science 12, pp.778-784, 1966. [17]Cattrysse, D., M. Salomon, R. Kuik, L. N. Wassenhove, “A dual ascent and column generation heuristic for the discrete lotsizing and scheduling problem with setup-times”, Management Science 39, pp.477-486, 1993. [18]Chang, S. C., “Fuzzy production inventory for fuzzy product quantity with triangular fuzzy number”, Fuzzy Sets and System. [19]Chang, S. C., J. S. Yao, and H. M. Lee, “Economic reorder point for fuzzy backorder quantity”, European J. of Operational Research 109, pp.183-202, 1998. [20]Coleman, B. J. and M. A. Mcknew, “An improved heuristic for multilevel lot sizing in material requirements planning”, Decision Sciences 22, pp.136-156, 1991. [21]Dauzere-Peres, S. and J. B. Lasserre, “Integration of lotsizing and scheduling decisions in a job-shop”, European Journal of Operational Research 75, pp.413-426, 1994. [22]Delporte, C. and L. Thomas, “Lot sizing and sequencing for N products and one facility”, Management Science Vol. 23, pp.1071-1079, 1977. [23]Diaby, M., H. C. Bahl, M. H. Karwan, and S. Zionts, “A Lagrangean relaxation approach for very-large-scale capacitated lot-sizing’, Management Science 38, pp.1329-1340, 1992. [24]Diaby, M., H. C. Bahl, M. H. Karwan, and S. Zionts, “Capacitated lot-sizing and scheduling by Lagrangean relaxation”, European Journal of Operational Research 59, pp.444-458, 1992. [25]Dobson, G., “The economic lot-scheduling problem: achieving feasibility using time-varying lot sizes”, Operations Research Vol. 35, pp.764-771, 1978. [26]Drexl, A., and A. Kimms, “Lot sizing and scheduling-survey and extensions”, European Journal of Operational Research 99, pp.221-235, 1996. [27]Drexl, A., and K. Haase, “Proportional lotsizing and scheduling”, International Journal of Production Economics 40, pp.73-87, 1995. [28]Drexl, A., and K. Haase, “Sequential-analysis based randomized-regret-methods for lot-sizing and scheduling”, Journal of the Operational Research Society 47, pp.251-265, 1996. [29]Elmaghraby, S. E., “The economic lot scheduling problem : review and extensions”, Management Science 24, pp.587-598, 1978. [30]Eppen, G. D. and R. K. Martin, “Solving multi-item capacitated lot-sizing problems using variable redefinition”, Operations Research 35, pp.832-848, 1987. [31]Federgruen, A. and M. A. Tzur, “A simple forward algorithm to solve general dynamic lot sizing models with n periods in O(n log n) or O(n) time”, Management Science 37, pp.909-925, 1991. [32]Fleischmann, B., “The discrete lot-sizing and scheduling problem” European Journal of Operational Research 44, pp.337-348, 1990. [33]Fleischmann, B., “The discrete lot-sizing and scheduling problem with sequence-dependent setup costs”, European Journal of Operational Research 75, pp.395-404, 1994. [34]Fujita, S., “The Application of Marginal Analysis to the Economic Lot Scheduling Problem”, AIIE Transactions Vol. 10, No. 4, pp.354-361, 1978. [35]Gallego, G., “Reduced production rates in the economic lot scheduling problem”, International Journal of Production Research Vol. 31, pp.1035-1046, 1993. [36]Gallego, G. and I. Moon, “The effect of externalizing setups in the economic lot scheduling problem’, Operations Research Vol. 40, pp.614-619, 1992. [37]Gallego, G. and I. Moon, “Strategic investment to reduce setups times in the economic lot scheduling problem”, Naval research logistics Vol. 42, pp.773-790, 1995. [38]Glass, C. A., “Feasibility of scheduling lot sizes of three products on one machine”, Management Science Vol. 38, pp.1482-1494, 1992. [39]Goyal, S. K., “Determination of economic production quantities for a two-product single machine system”, International Journal of Production Research 22, 1984. [40]Grznar, J, and C. Riggle, “An optimal algorithm for the basic period approach to the economic lot scheduling problem”, Omega. Int. J. Mgmt. Sci. Vol. 25, No. 3, pp.355-364, 1997. [41]Gupta, S. M. and L. Brennan, “Lot sizing and backordering in multi-level product structures”, Production and Inventory Management Journal 33, pp.27-35, 1992. [42]Haessler, R. “An Improved Extended Basic Period Procedure for solving the Economic Lot Scheduling Problem”, AIIE Transactions Vol. 11, No. 4, PP.336-34, 1979. [43]Haessler, R. and Hogue. “A Note on the Single Machine Multi-Product Lot Scheduling Problem”, Management Science Vol. 22, No. 8, pp.909-912, 1976. [44]Hanssmann, F., “Operation Research in Production and Inventory”, 1962. [45]Harris, F. W., “How many parts to make at once”, Operational Research 38, pp.947-950, 1990. [46]Hindi, K. S., “Solving the CLSP by a Tabu Search heuristic”, Journal of the Operational Research Society 47, pp.151-161, 1996. [47]Hoesel, S. and A. Kolen, “A linear description of the discrete lot-sizing and scheduling problem”, European Journal of Operational Research 75, pp.342-353, 1994. [48]Hsu, W. L., “On the general feasibility test of scheduling lot sizes for several products on one machine”, Management Science 29, pp.93-105, 1983. [49]Ishii, K. and S. Imori, “A production ordering system for two-item, two-stage, capacity-constraint production and inventory model”, Int. J. Production Economics Vol. 44, pp.119-128, 1996. [50]Karmarkar, U. S. and S. Kekre, “The deterministic lotsizing problem with startup and reservation costs”, Operational Research 35, pp.389-398, 1987. [51]Khouja, M., “The economic lot scheduling problem under volume flexibility, forthcoming”, The International Journal of Production Economics Vol. 48, pp.73-86, 1997. [52]Kim, S. L., J. C. Hayya, and J. Hong, “Setup reduction and machine availability”, Production and Operations Management Vol. 4, pp.76-90, 1995. [53]Kimms, A., “Multi-level, single-machine lot sizing and scheduling (with initial inventory)”, European Journal of Operational Research 89, pp.86-99, 1996. [54]Kimms, A., “Competitive methods for multi-level lot sizing and scheduling : Tabu Search and randomized regrets”, International Journal of Production Research 34, pp.2279-2298, 1996. [55]Kimms, A., “Multi-level Lot Sizing and Scheduling Methods for Capacitated”, Dynamic, and Deterministic Models, Physica, Heidelberg, 1997. [56]Kirca, O. and M. A. Kokten, “A new heuristic approach for the multi-item dynamic lot sizing problem”, European Journal of Operational Research 75, pp.332-341, 1994. [57]Kuik, R., M. Salomon, L. N. Wassenhove, and J. Maes, “Linear Programming, Simulated Annealing and Tabu Search heuristics for lotsizing in bottleneck assembly system”, IIE Transactions 25, pp.62-72, 1993. [58]Lasserre, J. B., “An integrated model for job-shop planning scheduling”, Management Science 38, pp.1201-1211, 1992. [59]Lee, H. M. and J. S. Yao, “Economic order quantity in fuzzy sense for inventory without backorder model”, Fuzzy Sets and System 105, pp.13-31, 1999. [60]Lee, H. M. and J. S. Yao, “Economic production quantity for fuzzy demand quantity and fuzzy production quantity”, European J. of Operational Research 109, pp.203-211, 1998. [61]Lee, H. M. and J. S. Yao, “Fuzzy inventory with or without backorder for fuzzy order quantity with trapezoid fuzzy number”, Fuzzy Sets and System 105, pp.311-337, 1998. [62]Lee, H. M. and J. S. Yao, “Fuzzy inventory with backorder for order quantity”, Information Sciences Vol. 93, pp.283-319, 1996. [63]Madigan, J. G., “Scheduling a multi-product single-machine system for an inifinite planning period”, Management Science 14, pp.713-719, 1968. [64]Maxwell, W. L. and H. Singh, “The effect of restricting cycle times in the economic lot scheduling problem”, IIE Transaction 15, 1983. [65]Maes, J., J. O. McClain, and L. N. Van Wassenhove, “Multil-level Capacitated Lotsizing Complexity and LP-Based Heuristics”, European Journal of Operational Research 53, pp.131-148, 1991. [66]Khouja, M., Z. Michalewicz, and M. Wilmot, “The use genetic algorithms to solve the economic lot scheduling problem” European Journal of Operational Research Vol. 110 , pp.509-524, 1998. [67]Ozdamar, L. and G. Barbarosoglu, “An integrated Lagrangean relaxation-simulated annealing approach to the multi-level multi-item capacited lot sizing problem”, International Journal of Production Economics 68, pp.319-331, 2000. [68]Ozdamar, L. and S. I. Birbil, “Hybrid heuristics for the capacitated lot sizing and loading problem with setup times and overtime decisions”, European Journal of Operational Research 110, pp.525-547, 1998. [69]Park, K. and D. Yun, “A Stepwise Partial Enumeration Algorithm for the Economic Lot Scheduling Problem”, IIE Transactions December, pp.363-370, 1984. [70]Richter, K. and J. Voros, “On the stability region for multi-level inventory problems”, European Journal of Operational Research 41, pp.169-173, 1989. [71]Rogers, J., “A computational approach to the economic lot scheduling problem”, Management Science 4, pp.264-291, 1958. [72]Roll, Y. and R. Karni, “Multi-Item, Multi-Level Lot Sizing with an Aggregate Capacity Constraint”, European Journal of Operational Research 51, pp.73-87, 1991. [73]Roundy, R., “Rounding off to powers of two in continuous relaxations of capacitated lot sizing problems”, Management Science Vol. 35, pp.1433-1442, 1989. [74]Silver, E., “Deliberately slowing down output in a family production context”, International Journal of Production Research Vol. 29, pp.17-27. 1990. [75]Singh, H. and J. B. Foster, Production scheduling with sequence dependent setup costs“, IIE Transactions 19, 1987. [76]Stankard, M. F. and S. K. Gupta, “a note on Bomberger’s approach to lot size scheduling : heuristic proposed”, Management Science 15, pp.449-452. [77]Vemuganti, R. R., “On the feasibility of scheduling lot sizes for two products on one machine”, Management Science Vol. 24, pp.1668-1673, 1978. [78]Voros, J., “Setup cost stability region for the multi-level dynamic lot sizing problem”, European Journal of Operational Research 87, pp.132-141, 1995. [79]Wagner, H. M. and T. M. Whitin, “Dynamic version of the economic lot size model”, Management Science 5, pp.89-96, 1958. [80]Yao, M. J., “The economic lot scheduling problem with extension to multiple resource constraints”, Unpublished Ph.D. Dissertation, North Carolina State University, Raleigh, North Carolina USA, 1999. [81]Zipkin, P. H., “Computing optimal lot sizes in the economic lot scheduling problem”, Operations Research Vol. 39, pp.56-63, 1991.
|