(3.239.33.139) 您好!臺灣時間:2021/03/05 19:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃士芬
研究生(外文):Shih-Fen Huang
論文名稱:遺傳演算法應用於模糊需求之經濟批量排程問題
論文名稱(外文):Fuzzy Economic Lot Scheduling Problem with Genetic Algorithm Approach
指導教授:張炳騰張炳騰引用關係
指導教授(外文):Ping Teng Chang
學位類別:碩士
校院名稱:東海大學
系所名稱:工業工程學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:165
中文關鍵詞:經濟批量排程問題模糊需求遺傳演算法
外文關鍵詞:economic lot scheduling problemfuzzy demandsgenetic algorithm
相關次數:
  • 被引用被引用:13
  • 點閱點閱:317
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:1
決定批量是生產管理的一項重要決策,但現有的批量方法皆忽視批量問題中的需求模糊性。因此,本研究乃以經濟批量排程問題(economic lot scheduling problem ; ELSP)為範圍,即針對單一生產設備的幾種產品去調整其生產計劃,討論在模糊需求環境下批量方法的研究。
經濟批量排程問題的模式主要分為三類:(1)兩種基本解法:獨立解法(The Independent Solution ; IS)與共同週期法(The Common Cycle Approaches ; CC) ; (2)基本週期法(basic period ; BP) ; (3)延伸基本週期法(extended basic period ; EBP)。本研究的方法主要是將各個模式中之需求量透過三角模糊數來表示,並利用模糊數學的各種運算,將模糊需求代入經濟批量排程問題的各個模式中。由於所運算出的數學模式非常龐大,且模式中又含有限制式的因子,因此,將再加入遺傳演算法做最佳解的搜尋。經實驗分析後得知,模糊需求ELSP之平均總成本與傳統ELSP模式中之平均總成本相差無幾。
藉由本研究所設計出之運作模式,不僅考慮了現實環境中需求的不確定性因素,由於利用遺傳演算法做為搜尋的機制,也加快了獲得整體最佳解的速度,與避免落入區域最佳解的機會,提供決策者做決策的一項依據。在研究過程中亦發現許多值得未來繼續探討的問題與研究機會,並於文末提出建議。
Determining the lot sizes for products is an important strategy. Conventionally lot-sizing models often ignore future fuzziness or uncertainty in the lot sizing problems. This thesis considers the economic lot-size scheduling problem (ELSP) that concerns production planning in multi-product, single machine, and discusses fuzzy demands.
The economic lot-size scheduling problem is divided to three parts: (1) Two basic approaches ─ Independent Solution (IS) and Common Cycle (CC) approaches,(2) The Basic Period (BP) approach, and (3) The Extended Basic Period (EBP) approach. The thesis uses triangular fuzzy number and fuzzy mathematic in order to put the fuzzy demand into the economic lot-size scheduling problem models. Due to the complexity of the mathematical model and constraint, a genetic algorithm (GA) approach is developed to search for the optimal solution. After the data analyses, we found that the average total cost of the ELSP between the fuzzy and nonfuzzy models is almost equal.
According to the result and approach of this thesis, we were able to consider the uncertain demand factor and quickly find the optimal solution. It may provide important reference to industrial makers.
目錄
中文摘要……………………………………………………………………I
英文摘要……………………………………………………………………II
致謝…………………………………………………………………………III
目錄…………………………………………………………………………IV
表目錄………………………………………………………………………VII
圖目錄………………………………………………………………………VIII
第一章 緒論1
1.1研究背景與動機1
1.2研究目的2
1.3研究方法與步驟3
1.4研究工具3
1.5論文架構4
第二章 文獻探討5
2.1存貨模式的種類與演進5
2.1.1單階批量與排程問題(single-level lot sizing problem)6
2.1.2多階批量與排程問題(multi-level lot sizing problem)8
2.2經濟批量排程問題之背景(economic lot scheduling problem ; LSP)11
2.2.1經濟批量排程問題之定義11
2.2.2經濟批量排程問題模式12
2.3模糊理論18
2.3.1模糊理論簡介18
2.3.2三角模糊數18
2.3.3解模糊19
2.4遺傳演算法21
2.4.1編碼與解碼22
2.4.2初始母體22
2.4.3適應函數22
3.4.4複製22
2.4.5交配23
2.4.6突變23
2.4.7終止條件23
第三章 模糊需求單階ELSP模式中的二種基本解法24
3.1模糊需求之獨立解法(The Independent Solution ; IS)26
3.2模糊需求之共同週期法(The Common Cycle Approaches ; CC)30
3.3模糊需求共同週期法模式上之推論37
第四章 以基本週期法與延伸基本週期法求解模糊需求單階ELSP44
4.1基本週期(basic period ; BP)法44
4.1.1模糊需求之基本週期法44
4.1.2遺傳算法求解模糊需求之基本週期法58
4.2延伸基本週期(extended basic period ; EBP)法64
4.2.1模糊需求之延伸基本週期法64
4.2.2遺傳算法求解模糊需求之延伸基本週期法79
第五章 數據實證86
5.1基本參數設定之探討86
5.2數據實證探討87
5.2.1不同機器利用率下之探討87
5.2.2六個文獻中比較之例子92
5.3本章小節100
第六章 結論與未來研究方向101
6.1結論101
6.2未來研究方向101
參考文獻103
附錄一 ELSP模式範例說明110
附錄二 公式推導117
2.2(a):獨立解法推導過程117
2.2(b):共同週期法推導過程118
2.2(c):延伸基本週期法推導過程119
3.1(a):IS法之重心求解120
3.2(a):模糊數學之運算123
3.2(b):CC法目標式之重心求解123
3.2(c):CC法限制式之重心求解130
3.3(a):Lemma 1推導過程132
3.3(b):模糊需求之解模糊135
4.1(a):模糊數學之運算136
4.1(b):BP法目標式之重心求解137
4.1(c):BP法限制式之重心求解143
4.2(a):模糊數學之運算145
4.2(b):EBP法目標式之重心求解145
4.2(c):EBP法限制式之重心求解152
附錄三:實證結果圖表154
[1]林信成、彭啟峰,Oh ! Fuzzy 模糊理論剖析,第三波文化事業股份有限公司,1994。
[2]張兆旭,Fuzzy淺談,松崗電腦圖書資料股份有限公司,1993。
[3]蘇木春,機器學習類神經網路、模糊系統以及基因演算法則,全華出版社,1997。
[4]蘿珊智慧型科技工作室,MATLAB入門及應用,松崗電腦圖書資料股份有限公司,1999。
[5]張智星,MATLAB程式設計與應用,清蔚科技出版事業部,2000。
[6]Aggarwal, A. and J. K. Park, “Improved algorithms for economic lot-size problems”, Operations Research 41, pp.549-571, 1993.
[7]Arkin, E., D. Joneja, and R. Roundy, “Computational complexity of uncapacitated multi-echelon production planning problems”, Operations Research Lerrers 8, pp.61-66, 1989.
[8]Axsater, s., “an extension of the extended basic period approach for economic lot scheduling problem”, Journal of Optimization Theory and Applications 52, pp.179-189, 1987.
[9]Bahl, H. C., L. P. Ritzman, and J. N. D. Gupta, “Determining lot sizes and resource requirements: a review”, Operation Research Vol. 35, No. 3, pp.329-345, 1987.
[10]Barany, I., T. J. Roy, and L.A. Wolsey, “Strong formulations for multi-item capacitated lotsizing”, Management Science 30, pp.1255-1261, 1987.
[11]Barbarosoglu, G. and L. Ozdamar, “Analysis of solution space-dependent performance of simulated annealing : the case of the multi-level capacitated lot sizing problem”, Computer & Operations Research 27, pp.895-903, 2000.
[12]Bitran, G. R. and H. Matsuo, “Approximation formulations for the single-product capacitated lot size problem”, Operations Research 34, pp.63-74, 1986.
[13]Bitran, G. R. and H. H. Yanasse, “Computational complexity of the capacitated lot size problem”, Management Science 28, pp.1174-1186, 1982.
[14]Boctor, F. F., “The two-product, single-machine, static demand, infinite horizon lot scheduling problem”, Management Science 28, 1982.
[15]Boctor, F. F., “The G-group Heuristic for single machine lot scheduling”, International Journal of Production Research Vol. 25, No. 3, pp. 363-379, 1987.
[16]Bomberger, E. E., “A dynamic programming approach to a lot size scheduling problem”, Management Science 12, pp.778-784, 1966.
[17]Cattrysse, D., M. Salomon, R. Kuik, L. N. Wassenhove, “A dual ascent and column generation heuristic for the discrete lotsizing and scheduling problem with setup-times”, Management Science 39, pp.477-486, 1993.
[18]Chang, S. C., “Fuzzy production inventory for fuzzy product quantity with triangular fuzzy number”, Fuzzy Sets and System.
[19]Chang, S. C., J. S. Yao, and H. M. Lee, “Economic reorder point for fuzzy backorder quantity”, European J. of Operational Research 109, pp.183-202, 1998.
[20]Coleman, B. J. and M. A. Mcknew, “An improved heuristic for multilevel lot sizing in material requirements planning”, Decision Sciences 22, pp.136-156, 1991.
[21]Dauzere-Peres, S. and J. B. Lasserre, “Integration of lotsizing and scheduling decisions in a job-shop”, European Journal of Operational Research 75, pp.413-426, 1994.
[22]Delporte, C. and L. Thomas, “Lot sizing and sequencing for N products and one facility”, Management Science Vol. 23, pp.1071-1079, 1977.
[23]Diaby, M., H. C. Bahl, M. H. Karwan, and S. Zionts, “A Lagrangean relaxation approach for very-large-scale capacitated lot-sizing’, Management Science 38, pp.1329-1340, 1992.
[24]Diaby, M., H. C. Bahl, M. H. Karwan, and S. Zionts, “Capacitated lot-sizing and scheduling by Lagrangean relaxation”, European Journal of Operational Research 59, pp.444-458, 1992.
[25]Dobson, G., “The economic lot-scheduling problem: achieving feasibility using time-varying lot sizes”, Operations Research Vol. 35, pp.764-771, 1978.
[26]Drexl, A., and A. Kimms, “Lot sizing and scheduling-survey and extensions”, European Journal of Operational Research 99, pp.221-235, 1996.
[27]Drexl, A., and K. Haase, “Proportional lotsizing and scheduling”, International Journal of Production Economics 40, pp.73-87, 1995.
[28]Drexl, A., and K. Haase, “Sequential-analysis based randomized-regret-methods for lot-sizing and scheduling”, Journal of the Operational Research Society 47, pp.251-265, 1996.
[29]Elmaghraby, S. E., “The economic lot scheduling problem : review and extensions”, Management Science 24, pp.587-598, 1978.
[30]Eppen, G. D. and R. K. Martin, “Solving multi-item capacitated lot-sizing problems using variable redefinition”, Operations Research 35, pp.832-848, 1987.
[31]Federgruen, A. and M. A. Tzur, “A simple forward algorithm to solve general dynamic lot sizing models with n periods in O(n log n) or O(n) time”, Management Science 37, pp.909-925, 1991.
[32]Fleischmann, B., “The discrete lot-sizing and scheduling problem” European Journal of Operational Research 44, pp.337-348, 1990.
[33]Fleischmann, B., “The discrete lot-sizing and scheduling problem with sequence-dependent setup costs”, European Journal of Operational Research 75, pp.395-404, 1994.
[34]Fujita, S., “The Application of Marginal Analysis to the Economic Lot Scheduling Problem”, AIIE Transactions Vol. 10, No. 4, pp.354-361, 1978.
[35]Gallego, G., “Reduced production rates in the economic lot scheduling problem”, International Journal of Production Research Vol. 31, pp.1035-1046, 1993.
[36]Gallego, G. and I. Moon, “The effect of externalizing setups in the economic lot scheduling problem’, Operations Research Vol. 40, pp.614-619, 1992.
[37]Gallego, G. and I. Moon, “Strategic investment to reduce setups times in the economic lot scheduling problem”, Naval research logistics Vol. 42, pp.773-790, 1995.
[38]Glass, C. A., “Feasibility of scheduling lot sizes of three products on one machine”, Management Science Vol. 38, pp.1482-1494, 1992.
[39]Goyal, S. K., “Determination of economic production quantities for a two-product single machine system”, International Journal of Production Research 22, 1984.
[40]Grznar, J, and C. Riggle, “An optimal algorithm for the basic period approach to the economic lot scheduling problem”, Omega. Int. J. Mgmt. Sci. Vol. 25, No. 3, pp.355-364, 1997.
[41]Gupta, S. M. and L. Brennan, “Lot sizing and backordering in multi-level product structures”, Production and Inventory Management Journal 33, pp.27-35, 1992.
[42]Haessler, R. “An Improved Extended Basic Period Procedure for solving the Economic Lot Scheduling Problem”, AIIE Transactions Vol. 11, No. 4, PP.336-34, 1979.
[43]Haessler, R. and Hogue. “A Note on the Single Machine Multi-Product Lot Scheduling Problem”, Management Science Vol. 22, No. 8, pp.909-912, 1976.
[44]Hanssmann, F., “Operation Research in Production and Inventory”, 1962.
[45]Harris, F. W., “How many parts to make at once”, Operational Research 38, pp.947-950, 1990.
[46]Hindi, K. S., “Solving the CLSP by a Tabu Search heuristic”, Journal of the Operational Research Society 47, pp.151-161, 1996.
[47]Hoesel, S. and A. Kolen, “A linear description of the discrete lot-sizing and scheduling problem”, European Journal of Operational Research 75, pp.342-353, 1994.
[48]Hsu, W. L., “On the general feasibility test of scheduling lot sizes for several products on one machine”, Management Science 29, pp.93-105, 1983.
[49]Ishii, K. and S. Imori, “A production ordering system for two-item, two-stage, capacity-constraint production and inventory model”, Int. J. Production Economics Vol. 44, pp.119-128, 1996.
[50]Karmarkar, U. S. and S. Kekre, “The deterministic lotsizing problem with startup and reservation costs”, Operational Research 35, pp.389-398, 1987.
[51]Khouja, M., “The economic lot scheduling problem under volume flexibility, forthcoming”, The International Journal of Production Economics Vol. 48, pp.73-86, 1997.
[52]Kim, S. L., J. C. Hayya, and J. Hong, “Setup reduction and machine availability”, Production and Operations Management Vol. 4, pp.76-90, 1995.
[53]Kimms, A., “Multi-level, single-machine lot sizing and scheduling (with initial inventory)”, European Journal of Operational Research 89, pp.86-99, 1996.
[54]Kimms, A., “Competitive methods for multi-level lot sizing and scheduling : Tabu Search and randomized regrets”, International Journal of Production Research 34, pp.2279-2298, 1996.
[55]Kimms, A., “Multi-level Lot Sizing and Scheduling Methods for Capacitated”, Dynamic, and Deterministic Models, Physica, Heidelberg, 1997.
[56]Kirca, O. and M. A. Kokten, “A new heuristic approach for the multi-item dynamic lot sizing problem”, European Journal of Operational Research 75, pp.332-341, 1994.
[57]Kuik, R., M. Salomon, L. N. Wassenhove, and J. Maes, “Linear Programming, Simulated Annealing and Tabu Search heuristics for lotsizing in bottleneck assembly system”, IIE Transactions 25, pp.62-72, 1993.
[58]Lasserre, J. B., “An integrated model for job-shop planning scheduling”, Management Science 38, pp.1201-1211, 1992.
[59]Lee, H. M. and J. S. Yao, “Economic order quantity in fuzzy sense for inventory without backorder model”, Fuzzy Sets and System 105, pp.13-31, 1999.
[60]Lee, H. M. and J. S. Yao, “Economic production quantity for fuzzy demand quantity and fuzzy production quantity”, European J. of Operational Research 109, pp.203-211, 1998.
[61]Lee, H. M. and J. S. Yao, “Fuzzy inventory with or without backorder for fuzzy order quantity with trapezoid fuzzy number”, Fuzzy Sets and System 105, pp.311-337, 1998.
[62]Lee, H. M. and J. S. Yao, “Fuzzy inventory with backorder for order quantity”, Information Sciences Vol. 93, pp.283-319, 1996.
[63]Madigan, J. G., “Scheduling a multi-product single-machine system for an inifinite planning period”, Management Science 14, pp.713-719, 1968.
[64]Maxwell, W. L. and H. Singh, “The effect of restricting cycle times in the economic lot scheduling problem”, IIE Transaction 15, 1983.
[65]Maes, J., J. O. McClain, and L. N. Van Wassenhove, “Multil-level Capacitated Lotsizing Complexity and LP-Based Heuristics”, European Journal of Operational Research 53, pp.131-148, 1991.
[66]Khouja, M., Z. Michalewicz, and M. Wilmot, “The use genetic algorithms to solve the economic lot scheduling problem” European Journal of Operational Research Vol. 110 , pp.509-524, 1998.
[67]Ozdamar, L. and G. Barbarosoglu, “An integrated Lagrangean relaxation-simulated annealing approach to the multi-level multi-item capacited lot sizing problem”, International Journal of Production Economics 68, pp.319-331, 2000.
[68]Ozdamar, L. and S. I. Birbil, “Hybrid heuristics for the capacitated lot sizing and loading problem with setup times and overtime decisions”, European Journal of Operational Research 110, pp.525-547, 1998.
[69]Park, K. and D. Yun, “A Stepwise Partial Enumeration Algorithm for the Economic Lot Scheduling Problem”, IIE Transactions December, pp.363-370, 1984.
[70]Richter, K. and J. Voros, “On the stability region for multi-level inventory problems”, European Journal of Operational Research 41, pp.169-173, 1989.
[71]Rogers, J., “A computational approach to the economic lot scheduling problem”, Management Science 4, pp.264-291, 1958.
[72]Roll, Y. and R. Karni, “Multi-Item, Multi-Level Lot Sizing with an Aggregate Capacity Constraint”, European Journal of Operational Research 51, pp.73-87, 1991.
[73]Roundy, R., “Rounding off to powers of two in continuous relaxations of capacitated lot sizing problems”, Management Science Vol. 35, pp.1433-1442, 1989.
[74]Silver, E., “Deliberately slowing down output in a family production context”, International Journal of Production Research Vol. 29, pp.17-27. 1990.
[75]Singh, H. and J. B. Foster, Production scheduling with sequence dependent setup costs“, IIE Transactions 19, 1987.
[76]Stankard, M. F. and S. K. Gupta, “a note on Bomberger’s approach to lot size scheduling : heuristic proposed”, Management Science 15, pp.449-452.
[77]Vemuganti, R. R., “On the feasibility of scheduling lot sizes for two products on one machine”, Management Science Vol. 24, pp.1668-1673, 1978.
[78]Voros, J., “Setup cost stability region for the multi-level dynamic lot sizing problem”, European Journal of Operational Research 87, pp.132-141, 1995.
[79]Wagner, H. M. and T. M. Whitin, “Dynamic version of the economic lot size model”, Management Science 5, pp.89-96, 1958.
[80]Yao, M. J., “The economic lot scheduling problem with extension to multiple resource constraints”, Unpublished Ph.D. Dissertation, North Carolina State University, Raleigh, North Carolina USA, 1999.
[81]Zipkin, P. H., “Computing optimal lot sizes in the economic lot scheduling problem”, Operations Research Vol. 39, pp.56-63, 1991.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔