(3.238.186.43) 您好!臺灣時間:2021/02/28 11:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳培蓉
研究生(外文):Pei-Jung Chen
論文名稱:牛蒡中果糖基轉移活性之研究
論文名稱(外文):Studies on the Activity of Fructosyltransferase from the Burdock (Arctium lappa L.)
指導教授:溫銘
指導教授(外文):Prof. Ming C. Wen
學位類別:碩士
校院名稱:東海大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:75
中文關鍵詞:牛蒡果糖基轉移
外文關鍵詞:BurdockFructosyltransferase
相關次數:
  • 被引用被引用:1
  • 點閱點閱:409
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
果寡醣具有促進雙岐桿菌 (Bifidobacteria) 增殖生理機能。工業上大多利用麴菌 Aspergillus niger 所產生的酵素 β-喃果糖 (β-fructofruanosidase) 來製造,但是必須在高蔗糖濃度下才能進行反應,所以於果寡醣漿商品中仍含有大量的蔗糖,需從產物中去除單糖及雙糖,才可以得到高純度的果寡糖。本研究期望能從菊科植物中之牛蒡當中找出ㄧ個取代 Aspergillus niger 所產生的酵素 β-喃果糖,製造高純度的聚果糖,應用在食品上。
於牛蒡粗萃取液中含有未知寡醣,經過初步鑑定主要為一個葡萄糖和三個果糖所構成的聚果醣。粗酵素液經由 20% ~ 65% 硫酸銨沉澱、 Sephadex G-75 管柱層析及 Sephadex G-200 管柱層析純化。粗酵素液最適 pH 約為 6.0 ,最適溫度為 25 ℃ ,以蔗糖為基質,求得牛蒡果糖基轉移之 Km = 0.26 M , Vmax = 13.00 μmole kestose / mL hr。 Hg2+及 Cu2+ 離子為強的抑制劑,而 Na+ 、 K+ 、 Fe2+ 及 Ca2+ 離子為較弱的抑制劑,添加 Iodoacetic acid 和尿素也會抑制酵素的活性。 Mg2+ 和 Zn2+ 離子會促進果糖基轉移酵素的活性,添加Phenylmethanesulfonyl fluoride 和 EDTA 也會增加果糖基轉移的活性。

In the food industry, people use β-fructofruanosidase from Aspergillus niger to produce oligosaccharide which enhance the growth Bifidobacteria. The reaction starts only at the high sucrose concentration and there are still large amount sucrose in the product. The monosaccharide and disaccharide must be removed to obtain high concentration of oligosaccharide. In this research, we wished to find an enzyme from the burdock (Arctium lappa L.) to replace β-fructofruanosidase from Aspergillus niger to produce high concentration of oligosaccharides to be utilized in the food industry.
An unknown oligosaccharide was found in the burdock extract and was identified as a tetrasaccharide which consisted of two fructosyl units linked to sucrose. The 20 ~ 65% of ammonium sulfate fraction of the enzyme was collected, and applied to a G-75 gel filtration column. Later, the partially purified enzyme was applied to another Sephadex G-200 gel filtration column. The optimum pH of the enzyme was about 6.0. The optimum temperature for enzyme reaction was 25 ℃. The Km value and the Vmax value of fructosyltransferase were determined to be 0.26 M and 13.00 μmole kestose / mL hr using sucrose as a substrate. Hg2+ and Cu2+ were apparent inhibitors, and Na+, K+, Fe2+ and Ca2+ were mild inhibitors. Iodoacetic acid and urea were also inhibitors. However, Mg2+ , Zn2+ , EDTA and phenylmethanesulfonyl fluoride were activators.

略字解…………………………………………………….……………....i
中文摘要……………………………………………...……………….…ii
英文摘要…………………………………………….…………………. iii
壹、緒論………...……………………………………………..……...…..1
貳、文獻整理………………………………………………..……...…….3
一、牛蒡簡介……….………………………………………….....……..3
二、聚果醣簡介………………………………………………...…..…...4
(一)聚果醣在植物生理學上的角色………………………….....….4
(二)聚果醣之生合成…………………………….……….....………5
(三)聚果醣之結構……….………………..……...………………..10
(四)果糖基轉移之研究……………………..………...………...11
(五)影響果糖基轉移活性之因子..………………………..…....13
1.pH值…………………………………………………………13
2.溫度…………………………………………………………..13
3.金屬離子…………………………………………………..…13
4.化學修飾劑…………………………………………………..14
(六)聚果醣之分子生物學………..…………………………….….14
(七)聚果醣的功用…………………..………………………...…...17
參、材料與方法…………………………...………………..……...……18
一、試驗材料…………………..…………...……………….…………18
(一)材料…….…………….………………………………………..18
(二)藥品.………………….…………………………….………….18
(三)酵素純化緩衝液………………………………………………20
(四)酵素反應液……………………………….……………….…..20
(五)SDS 蛋白質電泳試劑溶液配製……………………….…….20
(六)Folin-酚測定法試劑………………...………………………..22
(七)檸檬酸-磷酸鹽緩衝溶液之製備……………………………..24
二、儀器設備………..…………………………………...…………….24
三、試驗方法…………………………………………………...……...25
(一)未知聚醣之分析……………………………………...……….25
(二)果糖基轉移純化之步驟…………………………...……….25
(三)酵素液中蛋白質含量之測定……………………...………….28
(四)牛蒡中粗酵素液之濾紙層析………………………………....29
(五)新舊牛蒡中果糖基轉移之活性比較………………………29
(六)pH 對粗酵素液中果糖基轉移活性的影響……………….29
(七)溫度對粗酵素液中果糖基轉移活性的影響………………31
(八)蔗糖濃度對牛蒡果糖基轉移活性的影響…………………31
(九)化學修飾劑及金屬離子對牛蒡粗酵素液中果糖基轉移活性之影響…………………………………………………………31
1.不同的化學修飾劑對果糖基轉移活性之影響……………31
(1)硫醇及二硫蘇糖醇對果糖基轉移安定性之研究……31
(2)不同濃度的化學修飾劑對果糖基轉移活性之影響…33
2.不同濃度的金屬離子對果糖基轉移活性之影響…………33
(1) 鎂離子對粗酵素液中果糖基轉移活性的影響………33
(2) 鋅離子對粗酵素液中果糖基轉移活性的影響……....33
3.不同濃度的金屬離子及化學修飾劑對果糖基轉移活性之影 響………………………………………………………………34
肆、結果與討論…………………………………………………………36
一、牛蒡中未知聚醣之分析……..……………………………….…….36
二、果糖基轉移之純化………..……………………………………..36
(一)不同硫酸銨沈澱對酵素活性之影響…………………………36
(二) Sephadex G-75 膠體管柱層析……………………………...41
(三) Sephadex G-200 膠體管柱層析…..………………………...44
(四) SDS-聚丙烯醯胺凝膠電泳…………...………...……….…44
三、新舊牛蒡中果糖基轉移之活性比較……………………………48
四、pH 對粗酵素液中果糖基轉移的影響………………………….48
五、溫度對粗酵素液中果糖基轉移的影響…………………………51
六、蔗糖濃度對牛蒡果糖基轉移活性的影響………………………51
七、化學修飾劑及金屬離子對牛蒡粗酵素液中果糖基轉移活性之影響……………………………………………………………………55
(一)不同的化學修飾劑對果糖基轉移活性之影響…………....55
1.硫醇及二硫蘇糖醇對果糖基轉移安定性之研究…………55
2.不同濃度的化學修飾劑對果糖基轉移活性之影響………55
(二)不同濃度的金屬離子對果糖基轉移活性之影響…………58
1.鎂離子對粗酵素液中果糖基轉移活性的影響……………60
2.鋅離子對粗酵素液中果糖基轉移活性的影響……………60
(三)不同濃度的金屬離子及化學修飾劑對果糖基轉移活性之影響………………………………………………………………60
伍、結論………………………..………………………..……...……….66
參考文獻………………………………………………………………..68
圖 次
圖一、植物中合成聚果醣之反應過程……………………………..……7
圖二、聚果醣於植物中合成的模式……………………………………..9
圖三、牛蒡…………….………………………………………...………19
圖四、牛蒡粗萃取液之 HPLC 分析圖……………………………......37
圖五、牛蒡粗萃取液之濾紙層析圖……………...………………...…..38
圖六、未知聚醣水解 2 小時 HPLC 的分析圖…………….…..….....39
圖七、不同硫酸銨沈澱之沈澱物、上清液的酵素活性……….……….40
圖八、65% 硫酸銨沈澱酵素反應之 HPLC 分析圖…………………42
圖九、 Sephadex G-75 膠體管柱層析圖……………...…….………...43
圖十、 Sephadex G-200 膠體管柱層析圖………………...…………..45
圖十一、 Sephadex G-75 管柱收集之酵素液的SDS電泳圖………...46
圖十二、 pH 對果糖基轉移活性的影響…………………………...50
圖十三、溫度對果糖基轉移活性的影響……………………………52
圖十四、蔗糖濃度對牛蒡果糖基轉移活性的影響…………………53
圖十五、蔗果三糖生成反應蔗糖受質之雙倒數作圖…………………54
圖十六、粗酵素液中果糖基轉移之安定性…………………………56
圖十七、鎂離子濃度對粗酵素液中果糖基轉移活性的影響………61
圖十八、鋅離子濃度對粗酵素液中果糖基轉移活性的影響………62
圖 次
圖一、植物中合成聚果醣之反應過程……………………………..……7
圖二、聚果醣於植物中合成的模式……………………………………..9
圖三、牛蒡…………….………………………………………...………19
圖四、牛蒡粗萃取液之 HPLC 分析圖……………………………......37
圖五、牛蒡粗萃取液之濾紙層析圖……………...………………...…..38
圖六、未知聚醣水解 2 小時 HPLC 的分析圖…………….…..….....39
圖七、不同硫酸銨沈澱之沈澱物、上清液的酵素活性……….……….40
圖八、65% 硫酸銨沈澱酵素反應之 HPLC 分析圖…………………42
圖九、 Sephadex G-75 膠體管柱層析圖……………...…….………...43
圖十、 Sephadex G-200 膠體管柱層析圖………………...…………..45
圖十一、 Sephadex G-75 管柱收集之酵素液的SDS電泳圖………...46
圖十二、 pH 對果糖基轉移活性的影響…………………………...50
圖十三、溫度對果糖基轉移活性的影響……………………………52
圖十四、蔗糖濃度對牛蒡果糖基轉移活性的影響…………………53
圖十五、蔗果三糖生成反應蔗糖受質之雙倒數作圖…………………54
圖十六、粗酵素液中果糖基轉移之安定性…………………………56
圖十七、鎂離子濃度對粗酵素液中果糖基轉移活性的影響………61
圖十八、鋅離子濃度對粗酵素液中果糖基轉移活性的影響………62
表 次
表一、於不同維管束植物純化之蔗糖:蔗糖果糖基轉移性質….….12
表二、 SDS-PAGE標準品分子量……………..………....…………….23
表三、 HPLC 分離條件…………………………...…….....…………..26
表四、 HPLC 分離條件…………………………………...…...………30
表五、 HPLC 分離條件………………………………….……..…...…32
表六、 HPLC 分離條件…………………………………...……….…..32
表七、三因子實驗設計…………..…….……….………...…….………35
表八、牛蒡果糖基轉移分離純化的結果……………...…………….47
表九、新舊牛蒡果糖基轉移活性之比較……………………………49
表十、化學修飾劑對牛蒡粗酵素液中果糖基轉移活性之影……....57
表十一、金屬離子對牛蒡粗酵素液中果糖基轉移活性之影響…....59
表十二(A)、金屬離子及化學修飾劑對牛蒡粗酵素液中果糖基轉移活性之影響………………………………………………63
表十二(B)、金屬離子及化學修飾劑對牛蒡粗酵素液中果糖基轉移活性之影響………………………………………………65

陳鴻彬、林世欽:牛蒡(=健康飲料)有發展潛力。農友月刊 4月號,pp. 83-87 (1992).
陳鴻彬、陳榮五:牛蒡。台灣農家要覽,農作篇(二), pp. 215-218。豐年社,台北 (1995).
陳慧勇:小麥及水稻秧苗中轉化酵素之果糖機轉移活性研究。東海大學食品科學研究所碩士論文 (1997).
船津 勝、歐靜枝譯著,酵素, p. 62-66. 復漢出版社,台南 (1977).
張為憲、林宏基、甘子能、陳昭義、蕭寧馨,高等食品化學, p. 109-116. 華香園出版社,台北 (1987).
溫銘、張海豐、陳慧勇、楊繼宸、陳幼瑩、王偉杰:以甘蔗汁製造機能性低聚果糖及其在混合果汁飲料上之應用。中國園藝, 39 (1): 42-58 (1993).
廖梅桂:適合夏季栽培的根莖菜類(蘿蔔、胡蘿蔔、牛蒡、豆薯、山藥、芋、薑)。台灣農村, 19 (2): 11-19 (1983).
蘇仲卿、陸廷琴、林耀輝:台灣產香蕉中之一種三醣類。中國農業化學會誌, 1-2: 33-34 (1963).
蘇遠志:機能性糖質甜味料的研究發展。生物產業, 2 (2-3): 17-34 (1991).
昭人出版社編輯部,中藥大辭典第一冊, p.719-721,台中市 (1979).
G. D. Bonnett, I. M. Sims, J. A. S. John, R. J. Simpson: Purification and characterization of fructans with β-2,1- and β-2,6-glycosidic linkages suitable for enzyme studies. New Phytol. 127: 261—269 (1994).
G. D. Bonnett, I. M. Sims, R. J. Simpson, A. J. Cairns: Structural diversity of fructan in relation to the taxonomy of the Poaceae. New Phytol. 136: 11—17 (1997).
N. C. Carpita, J. Kanabus, T. L. Housley: Linkage structure of fructans and fructan oligomers from Triticum aestivum and Festuca arundinaceae leaves. J. Plant Physiol. 134: 162—168 (1989).
G. L. Cote and J. Ahlgren: Metabolism in microorganisms, Part I. Levan and levansucrase. In: Science and Technology of Fructans.(M Suzuki, NJ Chatterton, eds), pp.141—168. CRC Press, Boca Raton, FL (1993).
N. Duchateau, K. Bortlik, U. Simmen, A. Wiemken, P. Bancal: Sucrose:fructan 6-fructosyltransferase, a key enzyme for diverting carbon from sucrose to fructan in barley leaves. Plant Physiol. 107: 1249—1255 (1995).
J. Edelman and T. G. Jefford: The mechanism of fructosan metabolism in plants as exemplified in Helianthus tuberosis. New Phytol. 67: 517—531 (1968).
M. Ernst, N. J. Chatterton, P. A. Harrison: Purification and characterization of a new fructan series from species of Asteraceae. New Phytol. 132: 63—66 (1996).
A. ed Fuchs: Inulin and Inulin Containing Crops: Studies in Plant Science. Elsevier, Amsterdam (1993).
G. R. Gibson, E. R. Beatty, X. Wang, J. H. Cummings: Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology. 108: 975—982 (1995).
P. D. Haaland: Experimental design in biotechnology. Marcel Dekker, INC. New York and Basel. 105: 189-196 (1989).
S. de Halleux and P. Van Cutsem: Cloning and sequencing of the 1-SST cDNA from chicory root (accession no. U81520) (PGR 97—036). Plant Physiol. 113: 1003 (1997).
E. M. Hellwege, D. Gritscher, L. Willmitzer, A. G. Heyer: Transgenic potato tubers accumulate high levels of 1-kestose and nystose: functional identification of a sucrose:sucrose 1-fructosyl- transferase of artichoke (Cynara scolymus) blossom discs. Plant J. 12: 1057—1065 (1997).
E. M. Hellwege, M. Raap, D. Gritscher, L. Willmitzer, A. G. Heyer: Differences in chain length distribution of inulin from Cynara scolymus and Helianthus tuberosus are reflected in a transient plant expression system using the respective 1-FFT cDNAs. FEBS Lett. 427: 25—28 (1998).
R. J. Henry and B. Darbyshire: Sucrose:sucrose 1-fructosyl-transferase and fructan:fructan 1-fructosyltransferase from Allium cepa. Phytochemistry. 19: 1017-1020 (1980).
G. A. F. Hendry and R. K. Wallace: The origin, distribution, and evolutionary significance of fructans. In: Science and Technology of Fructans. (M Suzuki, NJ Chatterton, eds), pp. 119—139. CRC Press, Boca Raton, FL (1993).
A. G. Heyer and J. R. Lloyd: Production of modified polymeric carbohydrates. Plant biotechnol. 10: 169-174 (1999).
U. Hochstrasser, M. Lüscher, C. De Virgilio, T. Boller, A. Wiemken: Expression of a functional 6-fructosyltransferase in the methylotrophic yeast Pichia pastoris. FEBS Lett. 440: 356—360 (1998).
A. J. Koops and H. H. Jonker: Purification and characterization of the enzymes of fructan biosynthesis in tubers of Helianthus tuberosus Colombia. II. Purification of sucrose:sucrose 1-fructosyltransferase and reconstitution of fructan synthesis in vitro with purified sucrose:sucrose 1-fructosyltransferase and fructan:fructan 1- fructosyltransferase. Plant Physiol. 110: 1167—1175 (1996).
U. K. Laemmli: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227: 680—685 (1970).
L. L’Hocine, Z. Wang, B. Jiang, S. Xu: Purification and partial characterization of fructosyltransferase and invertase from Aspergillus niger AS0023. J. of Biotechnol. 81: 73-84 (2000).
D. P. III Livingstone, N. J. Chatterton, P. A. Harrison: Structure and quantity of fructan oligomers in oat (Avena spp.). New Phytol. 123: 725—734 (1993).
O. H. Lowry, N. J. Rosebrough, A. L. Farr, R. J. Randall: Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265-275 (1951).
M. Lüscher, C. Erdin, N. Sprenger, U. Hochstrasser, T. Boller, A. Wiemken: Inulin synthesis by a combination of purified fructosyltransferases from tubers of Helianthus tuberosus. FEBS Lett. 385: 39—42 (1996).
E. A. H. Pilon-Smits, M. J. M. Ebskamp, M. J. Paul, M. J. W. Jeuken, P. J. Weis-beek, S. C. M. Smeekens: Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol. 107: 125—130 (1995).
C. J. Pollock: Fructans and the metabolism of sucrose in vascular plants. New Phytol. 104: 1—24 (1986).
C. J. Pollock and A. J. Cairns: Fructan metabolism in grasses and cereals. Annu Rev Plant Physiol. Plant Mol. Biol. 42: 77—101 (1991).
W. Praznik, R. H. Beck, T. Spies: Isolation and characterization of Sucrose:Sucrose 1-fructosyltransferase from tuber of Heliqmtus tuberosus L. Agric. Biol. Chem. 54 (9): 2429-2431 (1990).
W. Praznik and R. H. F. Beck: Application of gel permeation chromatographic systems to the determination of the molecular weight of inulin. J. Chromatogr. 348: 187—197 (1985).
A. F. Puebla, G. L. Salerno, H. G. Pontis: Fructan metabolism in two species of Bromus subjected to chilling and water stress. New Phytol. 136: 123—129 (1997).
M. Roberfroid: Dietary fiber, inulin and oligofructose: a review comparing their physiological effects. Crit. Rev. Food Sci. Nutr. 33: 103—148 (1993).
R. W. Scott: Transfructosylation in higher plants containing fructose polymers. Ph. D. thesis, University of London (1968).
R. Sévenier, R. D. Hall, I. M. Van der Meer, H. J. C. Hakkert, A. J. Van Tunen, A. J. Koops: High level fructan accumulation in a transgenic sugarbeet. Nat. Biotechnol. 16: 843—846 (1998).
J. A. Shannon, H. W. Smith: The excretion of inulin, xylose and urea by normal and phlorizinized man. J. Clin. Invest. 14: 393—401 (1935).
N. Shiomi, J. Yamada, M. Izawa: Isolation and identification of fructo-oligosaccharides in roots of asparagus (Asparagus officinalis L.). Agric. Biol. Chem. 40 (3): 567-575 (1976).
N. Shiomi and M. Izawa: Purification and characterization of sucrose:sucrose 1-fructosyltransferase from the roots of asparagus (Asparagus officinalis L.). Agric. Biol. Chem. 44: 603-614 (1980).
N. Shiomi, H. Kido, S. Kiriyama: Purification and properties of sucrose:sucrose 1F-β-D-fructosyltransferase in onion seeds. Phyto- chemistry. 24: 695-698 (1985).
N. Shiomi: Properties of fructosyltransferases involved in the synthesis of fructan in liliaceous plants. J. Plant Physiol. 134: 151—155 (1989).
N. Sprenger, K. Bortlik, A. Brandt, T. Boller, A. Wiemken: Purification, cloning, and functional expression of sucrose:fructan 6-fructosyl- transferase, a key enzyme of fructan synthesis in barley. Proc. Natl. Acad Sci. 92: 11652—11656 (1995).
N. Sprenger, L. Schellenbaum, K. van Dun, T. Boller, A. Wiemken: Fructan synthesis in transgenic tobacco and chicory plants expressing barley sucrose:fructan 6-fructosyltransferase. FEBS Lett. 400: 355—358 (1997).
T. Uchiyama: Metabolism in microorganisms, Part II. Biosynthesis and degradation of fructans by microbial enzymes other than levansucrase. In Science and Technology of Fructans (M. Suzuki, N. J. Chatterton, eds), pp.169—190, CRC Press, Boca Raton, FL (1993).
W. Van den Ende, J. De Roover, A. Van Laere: In vitro synthesis of fructofuranosyl-only oligosaccharides from inulin and fructose by purified chicory root fructan:fructan fructosyltransferase. Physiol. Plant 97: 346—352 (1996).
W. Van den Ende and A. Van Laere: De-novo synthesis of fructans from sucrose in vitro by a combination of two purified enzymes (sucrose:sucrose 1-fructosyltransferase and fructan: fructan 1-fructosyltransferase) from chicory roots (Cichorium intybus L.). Planta. 200: 335—342 (1996).
I. M. Van der Meer, A. J. Koops, J. C. Hakkert, A. J. Van Tunen: Cloning of the fructan biosynthesis pathway of Jerusalem artichoke. Plant J. 15: 489—500 (1998).
I. Vijn, A. van Dijken, M. Lüscher, A. Bos, E. Smeets, P. Weisbeek, A. Wiemken, S. Smeekens: Cloning of sucrose:sucrose 1-fructosyl- transferase from onion and synthesis of structurally defined fructan molecules from sucrose. Plant Physiol. 117: 1507—1513 (1998).
I. Vijn, A. van Dijken, N. Sprenger, K. van Dun, P. Weisbeek, A. Wiemken, S. Smeekens: Fructan of the inulin neoseries is synthesized in transgenic chicory plants (Cichorium intybus L.) harbouring onion (Allium cepa L.) fructan:fructan 6G-fructosyl- transferase. Plant J. 11: 387—398 (1997).
I. Vijn and S. Smeekens: Fructan: More than a reserve carbohydrate. Plant Physiol. 120: 351-359 (1999).
W. Wagner, F. Keller, A. Wiemken: Fructan metabolism in cereals: induction in leaves and compartmentation in protoplasts and vacuoles. Z. Pflanzenphysiol. 112: 359—372 (1983).
A. Wiemken, M. Frehner, F. Keller, W. Wanger: Fructan metabolism, enzymology and compartation. In: Current Topics in Plant Biolchemistry and physiology (D. D. Randal, C. D. Miles, C. J. Nelson, D. G. Blevins, J. A. Miernyle, eds.), Vol. 5, pp. 17-31. University of Missouri, Columbia, MO USA (1986).
A. Wiemken, N. Sprenger, T. Boller: Fructan: an extension of sucrose by sucrose. In HG Pontis, GL Salerno, EJ Echeverria, eds, Sucrose Metabolism, Biochemistry, Physiology and Molecular Biology. American Society of Plant Physiologists, Rockville, MD, pp. 178—189 (1995).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔