跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/06 23:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳思樺
研究生(外文):SzuHuaChen
論文名稱:表現依鈣蛋白質分解酵素抗轉錄核醣核酸對其轉殖小鼠生長及體組成的影響
論文名稱(外文):Regulation of Growth Performance and Body Composition by Expression of m-calpain Antisense RNA in Transgenic Mice
指導教授:歐柏榮
指導教授(外文):BorRungOu
學位類別:碩士
校院名稱:東海大學
系所名稱:畜產學系
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:99
中文關鍵詞:依鈣蛋白質分解酵素抗轉錄核醣核酸轉殖小鼠生長體組成
外文關鍵詞:calpainantisense RNAtransgenic micegrowth performancebody composition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究的目的是分析表現依鈣蛋白質分解酵素抗轉錄核醣核酸對其轉殖小鼠生長性能及體組成的影響。
以 PCR及南方點墨法的分析得知,被轉殖帶有依鈣蛋白質分解酵素抗轉錄核醣核酸質體之外源性基因之小鼠經過數代的繁殖仍可偵測到此外源基因,表示此外源性基因穩定的存在。轉殖公小鼠、非轉殖公小鼠、轉殖母小鼠及非轉殖母小鼠的體重在2.5-3月齡才有明顯的不同,但是採食量並沒有明顯差異,這說明基因轉殖小鼠體重的增加並非是因為採食量增加之故,而可能是由於體內能量代謝改變所致。
小鼠體組成之分析,顯示轉殖公小鼠、非轉殖公小鼠、轉殖母小鼠及非轉殖母小鼠在水分及粗蛋白的含量並沒有差異,但是轉殖公小鼠之粗脂肪含量在2.5月齡時顯著較非轉殖公小鼠者為高;轉殖母小鼠之粗脂肪含量在 3月齡顯著較非轉殖母小鼠者為高。由上述結果可知轉殖公小鼠及轉殖母小鼠分別在 2.5 及 3 月齡時顯著比非轉殖小鼠來得重,可能是因為細胞降低蛋白質分解所累積的能量在體內以脂肪的型式堆積所致。

The objective of this study was to investigate the effects of m-calpain antisense RNA on growth performance and body composition in transgenic mice. M-calpain cDNA fragment was inserted into pMAMneo vector, then the transgene was transferred into mouse embryo by microinjection. Transgenic mice were identified by polymerase chain reaction (PCR) and Southern blot. The body weights of transgenic male mice at 2.5 month old were higher than those of non-transgenic male mice at the same age. In addition, the body weights of transgenic female mice at 3 month old were higher than those of non-transgenic female mice at the same age. The concentrations of m-calpain in various tissues were determined by Western blot. To understand the possible mechanism, the body composition, water content, crude fat content and crude protein content were examined as well . There was no difference in water content and crude protein content between transgenic and non-transgenic mice. However, The crude fat content in transgenic mice was higher than those in non-transgenic mice. This result implied that the energy saved from reduction of protein degradation contributed to the accumulation of adipose tissue in transgenic mice.

目錄
頁次
摘要……………………………………………………………..1
緒言……………………………………………………………..2
文獻檢討………………………………………………………..3
壹、骨骼肌蛋白質分解的控制機制………………………..3
貳、依鈣蛋白質分解酵素 (calpain) 之簡介……………….6
參、依鈣蛋白質分解酵素及其內源性抑制劑 calpastatin 在動物體內各個組織中之表現以及對動物生長之影響……………………………………………………....28
肆、抗轉錄核糖核酸 (antisense RNA) 之應用……………32
材料與方法…………………………………………………....36
結果…………………………………………………………....45
討論…………………………………………………………....64
結論…………………………………………………………....68
參考文獻……………………………………………………....69
英文摘要………………………………………………………97
小傳……………………………………………………………99
圖次
頁次
圖 1. 依鈣蛋白質分解酵素之結構…………………………13
圖 2. 依鈣蛋白質分解酵素之內源性抑制物 calpastatin 之結構………………………………………………………21
圖 3. 依鈣蛋白質分解酵素自我活化的模式圖…………….25
圖 4. 依鈣蛋白質分解酵素經分離活化的模式圖………….26
圖 5. 依鈣蛋白質分解酵素自我活化及分離的模式圖…….27
圖 6. 質體 pMAMA 之圖譜………………………………...48
圖 7. 利用 PCR 鑑定基因轉殖小鼠之數目………………..49
圖 8. 利用 Southern blot 鑑定基因轉殖小鼠之數目………50
圖 9. 轉殖公小鼠與非轉殖公小鼠體重之比較…………….51
圖 10. 公小鼠體組成中水分之百分比……………………....53
圖 11. 公小鼠體組成中粗蛋白之百分比…………………...54
圖 12. 公小鼠體組成中粗脂肪之百分比…………………...55
圖 13. 轉殖母小鼠與非轉殖母小鼠體重之比較…………...56
圖 14. 母小鼠體組成中水分之百分比……………………...58
圖 15. 母小鼠體組成中粗蛋白之百分比…………………...59
圖 16. 母小鼠體組成中粗脂肪之百分比…………………...60
圖 17. 西方點墨法分析小鼠組織中 m-calpain 表現……....61
圖 18. 影像分析儀將圖16 數據化之結果………………….62
圖 19. 29週齡轉殖小鼠及非轉殖小鼠之照片………………63 
表次
頁次
表 1. 離乳後非轉殖公小鼠及轉殖公小鼠的採食量……….52
表 2. 離乳後非轉殖母小鼠及轉殖母小鼠的採食量……….57

參考文獻
Allen, R. E. 1986. Muscle cell growth and development.
Designing Foods. Animal Product Options in the
Marketplace.National Research Council, National Acad.
Press. Wash. D. C. pp 142-162.
Aoki, K., S. Imajoh, S. Ohno, Y. Emori, Y. Koike, G. Kosaki and
K. Suzuki. 1986. Complete amino acid sequence of the large
subunit of the low-Ca2+-requiring form of human Ca2+-
activated neturul protease (m-CANP) deduced from its cDNA
sequence. FEBS Lett. 205:313-317.
Arndt, G. M., and G. H. Rank. 1997. Colocalization of antisense
RNAs and ribozymes with their target mRNAs. Genome 40: 785-
797.
Arora, A. S., P. D. Groen, Y. Emori and G. J. Gores. 1996. A
cascade of degradative hydrolase activity contributes to
hepatocyte necrosis during anoxia. Am. J. Physiol. 270:
G238-G245.
Bainton, D. 1981. The discovery of lysosomes. J. Cell Biol.
91:66-76.
Barnoy, S., T. Glaser and N. S. Kosower. 1997. Calpain and
calpastatin in myoblast differentiation and fusion effects
of inhibitors. Biochem. Biophys. Acta. 1358:181-188.
Blomgren, K., E. Nilsson and J. O. Karlsson. 1989. Calpain and
calpastatin levels in different organs of the rabbit. Comp.
Biochem. Physiol. (B): Comp. Biochem. 93(2):403-407.
Carillo, S., M. Parita, A. M. Steff, P. Roux, M. Lorca, T.
Etienne-Julan and M. Piechaczyk. 1994. Differential
sensitivity of FOS and JUN family members to calpains.
Oncogene 9: 1679-1689.
Chng, J. L. C., R. C. Mulligan, P. Schimmel and E. W. Holmes.
1989. Antisense RNA complementary to 3’ coding and
noncoding sequences of creatine kinase is a potent
inhibitor of translation in vivo. Proc. Natl. Acad. Sci.
USA. 86: 10006-10010.
Cong, J., D. E. Goll, A. M. Peterson and H. Kapprell. 1989. The
role of autolysis in activity of the Ca2+-dependent
proteinases (m-calpain and m-calpain) . J. Biol. Chem.
264:10096-10103.
Dayton, W. R., D. E. Goll, M. G. Zeece, R. M. Robson and J.
Reville. 1976. A Ca2+ activated protease possibly involvcd
in myofibrillar protein turnover, purification from porcine
muscle. Biochemistry 15: 2150-2158.
Dayton, W. R., J. V. Schollmeyer, R. A. Lepley and L. R.
Cortes. 1981. A calcium-activated protease possibily
involoved in myofibrillar protein turnover. Isolation of a
low calcium requiring form of the protease. Biochim.
Biophys. Acta. 659:48-61.
DeLuca, C. I., P. L. Davies, J. A. Samis and J. S. Elce. 1993.
Molecular cloning and bacterial expression of cDNA for rat
calpain II 80 kDa subunit. Biochim. Biophys. Acta. 1216:81-
93.
Driscoll, J., and A. L. GoldBerg. 1989. Skeletal muscle
proteasome can degrade proteins in an ATP-dependent process
that does not require ubquitin. Proc. Natl. Acad. Sci. USA.
86: 787-791.
Dutt, P., J. S. C. Arthur, P. Grochulski, M. Cygler and J. S.
Elce.2000. Roles of individual EF-hand in the activation of
m-calpain by calcium. Biochem. J. 348: 37-43.
Elce, J. S., C. Hegadorn and J. S. C. Arthur. 1997. Autolysis,
Ca2+ requirement, and heterodimer stability in m-calpain.
J.Biol. Chem. 272: 11268-11275.
Ellison, M. J., R. J. Kelleher and A. Rich. 1985. Thermal
regulation of beta-galactosidase synthesis using anti-sense
RNA directed against the coding portion of the mRNA. J.
Biol. Chem. 260: 9085-9087.
Emori, Y., H. Kawasaki, S. Imajoh, S. Kawashima and K. Suzuki.
1986. Isolation and sequence analysis of cDNA clones for
the small subunit of rabbit calcium-dependent proteinase.
J. Biol. Chem. 261: 9472-9476.
Emori, Y., H. Kawasaki, S. Imajoh, Y. Minami and K. Suzuki.
1988. All four repeating domains of the endogenous
inhibitory activity. J. Biol. Chem. 263: 2364-2370.
Emori, Y. and K. Saigo. 1994. Calpain localization changes in
coordination with actin-related cytoskeletal changes during
early embryonic development of Dorsophila. J. Biol. Chem.
269:25137-25142.
Forsberg, N. E., M. A. Ilian, A. Ali-Bar, P. R. Cheeke and N.
B. Wehr. 1989. Effects of cimaterol on myofibrillar
protein degradation and on Ca2+ - dependent proteinase
( CDP ) and calpastatin activities in rabbit skeletal
muscles. J. Anim. Sci. 67: 3313-3321.
Frederick K., A. and M. W. Michael. 1996. Antisense-
oligonucleotide therapy. N. Engl. J. Med. 334:316-318.
Goll, D. E., J. D. Shannon, T. Edmundds, S. K. Sathe, W. C.
Kleese and P. A. Nagainis. 1983. Properties and regulation
of the Ca2+-dependent proteinase. Calcium-Binding
Proteins. Elsevier, Amsterdam. Pp 19-35.
Goll, D. E. 1991. Role of proteinases and protein turnover in
muscle growth and meat quality. Reciprocal Meat Conference
Proceeding 4:25-36.
Goll, D. E., V. F. Thompson, R. G. Taylor and J. A.
Christiansen. 1992. Role of calpain system in muscle
growth. Biochimie. 74: 225-237.
Goll, D. E., V. F. Thompson, R. G. Taylor and T. Zalewska.
1992. Is calpain activity regulated by calcium and
calpastatin? BioEssays 14: 549-556.
Gordon, J. W., G. A. Scangos, D. J. Plotkin, J. A. Barbova and
F. H. Ruddle. 1980. Genetic transformation of mouse embryos
by microinjection of purified DNA. Proc. Natl. Acad. Sci.
USA. 77:7380-7384.
Guroff, G. 1964. A netural, calcium-activated proteinase from
the soluble fraction of rat brain. J. Biol. Chem. 239:149.
Guttmann, R. P., J. S. Elce, P. D. Isbell and G. V. W. Johnson.
1997. Oxidation inhibits substrate proteolysis by calpain I
but not autolysis. J. Biol. Chem. 272:2005-2012.
Hammer, R. E., V. G. Pursel., C. E. Jr. Rexroad, R. J. Wall, D.
J. Bolt, K. M. Ebert, R. D. Palmiter and R. L. Brinster.
1985. Production of transgenic rabbits, sheep and pigs by
microinjection. Nature 315: 680-683.
Hayashi, M., M. Inomata and S. Kawashima. 1996. Function of
calpains. Possible involvement in myoblast fusion. Adv.
Exp. Med. & Biology 389:149-154.
Hirai, S. I., H. Kawasaki, M. Yaniv and K. Suzuki. 1991.
Degradation of transcription factors, c-Jun and c-Fos, by
calpain. FEBS Lett. 287: 57-61.
Hong, D. H., J. Huan, B. R. Ou, J. Y. Yeh, T. C. Saido, P. R.
Cheeke and N. E. Forsberg. 1995. Protein kinase C isoforms
in muscle cells and their regulation by phorbol ester and
calpain. Biochim. Biophys. Acta. 1267: 45-54.
Huang, J. and N. E. Forsberg. 1998. Role of calpain in skeletal
muscle protein degradation. Proc. Natl. Acad. Sci. USA.
95:12100-12105.
Huston, R. and E. G. Krebs. 1968. Activation of skeletal muscle
phosphorylase kinase by Ca2+. Identification of the kinase
activating factor as a proteolytic enzyme. Biochemistry
7:2116-2118.
Imajoh, S., H. Kawasaki, Y. Emori, S. Ishiuea, Y. Minami, H.
Sugita, K. Imahori and K. Suzuki. 1987. A fragment of an
endogenous inhibitor produced in Escherichia coli for
calcium-activited neutral protease ratain an inhibitory
activity. FEBS Lett. 215: 274-278.
Imajoh, S., K. Aoki, S. Ohno, Y. Emori, H. Kawasaki, H.
Sugihara and K. Suzuki. 1988. Molecular cloning of the cDNA
for the large subunit of the high-Ca2+-requiring form of
human Ca2+-activated neutral protease. Biochemistry 27:8112-
8118.
Inomata, M., M. Hayashi., M. Nakanome., K. Imahori and S.
Kawashima. 1983. Purification and characterization of a
calcium-activated neutral protease from rabbit skeletal
muscle which requires calcium ions of micro M order
concentration. J. Biochem. 93(1):291-294.
Inomata, M., Y. Kasai, M. Nakamura and S. Kawashima. 1988.
Activation mechanism of calcium-activated neutral protease.
Evidence for the existence of intramolecular and
intermolecular autolyses. J. Biol. Chem. 263:19783-19787.
Ishiura, S., S. Tsuji, H. Murofushi and K. Suzuki. 1982.
Purification of an endogenous 68000-dalton inhibitor of
Ca2+-activated neutral protease from chicken skeletal
muscle. Biochim. Biophys. Acta. 701: 216.
Izant, J. G. and H. Weintraub. 1985. Constitutive and
conditional suppression of exogenous and endogenous genes
by anti-sense RNA. Science 229:345-352.
Johnson, G. V. and R. P. Guttmann. 1997. Calpains: intact and
active? BioEssays 19:1011-1018.
Janas, E. A., R. J. Knox, T. C. Smith, N. L. Connor and L. K.
Kaczmarek. 1997. Regulation by insulin of a unique neuronal
Ca2+ pool and of neuropeptides scretion. Nature 385:343-346.
Kapprell, H. P. and D. E. Goll. 1989. Effect of Ca2+ on binding
of the calpains to calpastatin. J. Biol. Chem. 264: 17888-
17896.
Kawashima, S., M. Hayashi, Y. Saito, Y. Kasai and K. Imahori.
1988. Tissue distrubution of calcium-activated neutral
proteinases in rat. Biochim. Biophy. Acta. 965:130-135.
Kawasaki, H., Y. Emori, S. Imajoh, Y. Minami and K. Suzuki.
1989. Identification and characterization of inhibitory
sequences in four repeating domains of the endogenous
inhibitor for calcium-dependent protease. J. Biochem. 106:
274-281.
Kawasaki, H. and S. Kawashima. 1996. Regulation of the calpain-
calpastatin system by membranes. Mol. Membr. Biol. 13:27-
224.
Kettlehut, I. C., S. S. Wing and A. L. Goldberg. 1988.
Endocrine regulation of protein in skeletal muscle.
Diabetes and Metabolism Review 4 (8) :751-772.
Kinbara, K., H. Sorimachi, S. Ishiura and K. Suzuki. 1997.
Muscle-specific calpain, p94, interacts with the extreme C-
terminal region of connectin, a unique region flanked by
two immunoglobulin C2 motifs. Arch. Biochem. Biophys.
342:99-107.
Kishimoto, A., N. Kajikawa., H. Tabuchi., M. Shiota and Y.
Nishizuka. 1981. Calcium-dependent neural proteinases,
widespread occurrence of a species of protease active at
lower concentration of calcium. J. Biochem. 90(3):889-892.
Kitagaki, H., S. Tomioka, T. Yoshizawa, H. Sorimachi, T. C.
Saido, S. Ishiura and K. Suzuki. 2000. Autolysis of calpain
large subunit inducing irreversible dissociation of
stoichiomertric heterodimer of calpain. Biosci. Biotechnol.
Biochem. 64:689-695.
Kleese, W. C., D. E. Goll, T. Edmunds and J. D. Shannon. 1987.
Immunofluorescent localization of the Ca2+-dependent
proteinase and its inhibitor in tissue of Crotalus atrox.
J. Exp. Zool. 241:277-289.
Koohmaraie, M., S. D. Shackelford, N. E. Muggli-Cockett and
R. T. Stone. 1991. Effect of the β-adrenergic agonist
L644,969 on muscle growth, endogenous proteinase
activities, and postmortem proteolysis in wether lambs. J.
Anim. Sci. 69:4823-4835.
Lee, H. J. H. Sorimachi, S. Y. Jeong, S. Ishiura and K. Suzuki.
1998. Molecular cloning and characterization of a novel
tissue-specific calpain predominantly expressed in the
digestive tract. Biol. Chem. 379:175-183.  
Lewis, S. E. M., P. Anderson and D. F. Goldspink. l982. The
effect of calcium on proteim turnover in skeletal muscle of
the rats. Biochem. J. 204: 257-264.
Lin, T. P. 1966. Microinjection of mouse eggs. Science 151: 333-
337.
Lin, Y. C. K. Brown and U. Siebenlist. 1995. Activation of NF-
kappa B requires proteolysis of the inhibitor I kappa B-
alpha alone does not release active NF-kappa B. Proc. Natl.
Acad. Sci. U.S.A. 92: 552-556.
Llovera, M., C. Garcia-Martinez, N. Agell, F. J. Lopez-Soriano
and J. M. Argiles. 1995. Muscle wasting associated with
cancer cachexia is linked to an important activation of the
ATP-dependent ubiquitin-mediated proteolysis. Int. J.
Cancer 61: 138-141.
Loskutoff, N. M. 1986. Gene microinjection in bovine embryos
facilitated by centrifugation. Theriogenology 25: 168.
Lovell-Badge, R. H. 1985 New advances in the field. Nature
315: 628-629.
Maki, M., H. Ma, E. Takano, Y. Adachi, W. J. Lee, M. Hatanaka
and T. Murachi. 1991. Calpastatin: biochemical and
biological studies. Biom. Biochim. Acta 50:509-516.
Mansoor, O., B. Bernard, Y. Boirie, C. Ralliere, D.
Taillandier, E. Aurousseau, P. Schoeffler, M. Arnal and D.
Attaix. 1996. Increase mRNA level for components of the
lysosomal, Ca2+ -activated, and ATP-ubiquitin-dependent
proteolytic pathways in skeletal muscle from head trauma
patients. Proc. Natl. Acad. Sci. USA. 93: 2714-2718.
Mellgren, R. L., A. Repetti., TC. Muck and J. Easly. 1982.
Rabbit skeletal muscle calcium-dependent protease requiring
millimolar Ca2+. Purification, subunit, and Ca2+-dependent
autoproteolysis. J. Biol. Chem. 257(12):7203-7209.
Mellgren, R. L., Q. Lu, W. Zhang, M. Lakkis, E. Shaw and M. T.
Mericle. 1996. Isolation of a Chinese hamster ovary cell
clone possessing decreased m-calpain content and reduced
proliferative growth rate. J. Biol. Chem. 271:15568-15574.
Mellgren, R. L. 1997. Evidence for participation of a calcium-
like cysteine protease in cell progress through the late G1
phase. Biochem. Biophys. Res. Comm. 236:555-558.
Melloni, E., M. Michhetti, F. Salamino, R. Minafra and S.
Pontremoli. 1996. Modulation of the calpain autolysis by
calpastatin and phospholipids. Biochem. Biophys. Res. Comm.
299:193-197.
Melloni, E., M. Michhetti, F. Salamino, B. Sparatore and S.
Pontremoli. 1998. Mechanism of action of a new component of
the Ca2+-dependent proteolytic system in rat brain: the
calpain activator. Biochem. Biophys. Res. Comm. 249:583-588.
Melloni, E., M. Averna, F. Salamino, B. Sparatore, R. Minafra
and S. Pontremoli. 2000. Acyl-CoA-binding protein is a
potent m-calpain activator. J. Biol. Chem. 275:82-86.
Melloni, E., R. Minafra, F. Salamino and S. Pontremoli. 2000.
Properties and intracellular localization of calpain
activator protein. Biochem. Biophy. Res. Commun. 272:472-
476.
Melton, D. A. 1985. Injected anti-sense RNAs specifically
block messenger RNA translation in vivo. Proc. Natl. Acad.
Sci. USA. 82: 144-148.
Menard, H. A. and M. el-Amine. 1996. The calpain-calpastatin
system in rheumatoid arthritis. Immunology Today 17:545-547.
Molinari, M., J. Anagli and E. Carafoli. 1994. Ca2+-activated
neutral protease is active in the erythrocyte membrance in
its nonautolyzed 80-kDa form. J. Biol. Chem. 269:27992-
27995.
Morgan, J. B., T. L. Wheeler, M. Koohmaraie, J. D. Crouse and
J. W. Savell. 1993. Effect of castration on myofibrillar
protein turnover, endogenous proteinase activities, and
muscle growth in bovine skeletal muscle. J. Anim. Sci.
71:408-414.
Munroe, H. S. 1988. Antisense RNA inhibits splicing of pre-mRNA
in vitro. EMBO J. 7(8):2523-2532.
Murachi, T., K. Tanaka, M. Hatanaka and T. Murakami. 1980.
Intracellular Ca2+-dependent protease (calpain) and its
high-molecular-weight endogenous inhibitor (calpastatin).
Advances in Enzyme Regulation 19:407-424.
Murachi, T. 1983. Calpain and calpastatin. Trends Biochem. Sci.
8: 167-169.
Murakami, T., M. Hatanaka and T. Murachi. 1981. The cytosol of
human erythrocytes contains a highly Ca2+-sensitive thiol
protease (calpain I) and its specific inhibitor protein
(calpastatin). J. Biochem. 90(6):1809-1816.
Nixon, R. A., K. I. Saito, F. Grynspan, W. R. Griffin, S.
Katayama, T. Honda, P. S. Mohan, T. B. Shea and M Beermann.
1994. Calcium-activated neutral proteinase (calpain) system
in aging and Alzheimer’s disease. Ann. N. Y. Acad Sci.
747:77-91.
Northcutt, J. K., T. D. Pringle, J. A. Dickens, R. J. Buhr and
L. L. Young. 1998. Effects of age and tissue type on the
calpain proteolytic system in turkey skeletal muscle.
Poultry Science 77:367-372.
Ohno, S., Y. Emori, S. Imajoh, H. Kawasaki, M. Kisaragi and K.
Suzuki. 1984. Evolutionary origin of a calcium-dependent
proteinase by fusion of gene for a thiol-protease and
calcium-binding protein. Nature 312:566-570.
Orwing, K. E., J. E. Bertrand, B. R. Ou, N. E. Forsberg and F.
Stormshak. 1994. Involvement of protein kinase-C, calpains,
and calpastatin in prostaglandin F2α-induced oxytocin
secretion from the bovine corpus luteum. Endocrinology 134:
78-83.
Otsuka, Y. and D. E. Goll. 1987. Purification of the Ca2+-
dependent proteinase inhibitor from bovine cardiac muscle
and its interaction with the millimolar Ca2+-dependent
proteinase. J. Biol. Chem. 262: 5839-5851.
Ou, B. R., H. H. Meyer and N. E. Forsberg. 1991. Effect of age
and castration on activities of calpains and calpastatin in
sheep skeletal muscle. J. Anim. Sci. 69:1919-1924.
Ou, B. R., and N. E. Forsberg. 1991. Age-related expression of
calpain and calpastatin activities and mRNA in skeletal
muscle. J. Cell Biol. 111: 497.
Ou, B. R. 1994. Ph D Thesis. The role of calpain on musle
protein degradation. Oregon State University.
Palmiter, R. D., R. L. Brinster, R. E. Hammer, M. E. Trumbauer,
M. G. Rosenfeld, N. C. Birnberg and R. M. Evans. 1982.
Dramatic growth of mice that develop from eggs
microinjected with metallothionein-growth hormone fusion
genes. Nature 300: 611-615.
Pinter, M., A. Stierandova and P. Friedrich. 1992. Purification
and characterization of a Ca2+-activated thiol protease
from Drosophila melanogaster. Biochemistry 31:8201-8206.
Pittius, C. W., L. Hennighausen, E. Lee, H. Westphal, E.
Nicols, J. Vitale and K. Gordon. 1988. A milk protein gene
promoter directs the expression of human tissue plasminogen
activator cDNA to the mammary gland in transgenic mice.
Proc. Natl. Acad. Sci. U.S.A. 85: 5874-5878.
Potter, D. A., J. S. Tirnauer, R. Janssen, d. E. Croall, C. N.
Hughes, K. A. Fiacco, J. W. Mier, M. Maki and I. M. Herman.
1998. Calpain regulates actin remodeling during cell
spreading. J. Cell Biology 141: 647-662.
Poussard, S., P. Cottin, J. J. Brustis, S. Talmat, N. Elamrani
and A. Ducastaing. 1993. Quantitative measurement of
calpain I and II mRNAs in differentiating rat muscle cells
using a competitive polymerase chain reaction method.
Biochimie.75:885-890.
Publicover, S. J., C. J. Duncan and J. L. Smith. 1978.The use
of A23187 to demonstrate the role of intracellular calcium
in causing ultrastructural damage in mammalian muscle. J.
Neuropathol. Exp. Neurol. 37: 544-550.
Pursel,V. G., C. A. Pinkert, K. F. Millar, D. J. Bott, R. G.
Camphell, R. D. Palmiter, R. L. Brinster and R.E. Hammer.
1989. Genetic engineering of livestock. Science 244: 1281-
1288.
Pursel, V. G., and Rexroad C. E. Jr. 1993. Status of research
with transgenic farm animals. J. Anim. Sci. 71: 10-19.
Rexroad, C. E. Jr., P. R. Hammer, P. D. Behringer, R. D.
Palmiter and R. L. Brinster. 1990. Insertion,
expression and physiology of growth regulating gene in
ruminants. J. Reprod. Fert. Suppl. 41: 119-124.
Saido, T, C., S. Nagao, M. Shiramin, M. Tsukaguchi, T.
Yoshizawa, H. Sorimachi, H. Ito, T. Tsuchiya, S. Kawashima
and K. Suzuki. 1994. Distinct kinetics of subunit autolysis
in mammalian m-calpain activation. FEBS. Lett. 346: 263-267.
Samis, J. A., G. Zboril and J. S. Elce. 1987. Calpain I remains
intact and intracellular during platelet activation. Immunochemical measurements with monoclonal and polyclonal
antibodies. Biochem. J. 246:481-488.
Sakihama, T., H. Kakidani, K. Zenita, N. Yumoto, T. Kukichi, T.
Sasaki, R. Kannagi, S. Nakanishi, M. Ohmori, K. Titani and
T. Murachi.1985. A putative Ca2+ -binding protein:
structure of the light subunit of porcine calcium
elucidated by molecular cloning and protein sequence
analysis. Proc. Natl. Acad. Sci. USA 82: 6075-6079.
Sams, A. R., and S. G. Birkhold. 1992. Calpastatin activity in
developing avian tissue. FASEB 6:A1967.
Schinke, M., M. Bohm, G. Bricca, D. Ganten and M. Bader. 1996.
Permanent inhibition of angiotensinogen synthesis by
antisense RNA expression. Hypertension 27: 508-513.
Simons, J. P., M. McClenaghan and A. J. Clark. 1987. Alteration
of the quality of milk by expression of sheep beta-
lactoglobulin in transgenic mice. Nature 328: 530-532.
Smith, C. J. S., C.F. Watson, J. Ray, C. R. Bird, P.C. Morris,
W. Schuch and D. Grierson. 1988. Antisense RNA inhibition
of polygalacturonase gene expression in transgenic
tomatoes. Nature 334: 724-726.
Solomon, V., S. H. Lecker and A. L. Goldberg. 1998. The N-
end rule pathway catalyzes a major fraction of the protein
degradation in skeletal muscle. J. Biol. Chem. 260: 13619-
13624.
Sorimachi, H., S. I. Ohmi, Y. Emori, H. Kawasaki, S. Ohno, Y.
Minami and K. Suzuki. 1989. Molecular cloning of a novel
mammalian calcium-dependent protease distinct from both m-
calpain and μ-calpain. J. Biol. Chem. 264: 20106-20111.
Sorimachi, H., and K. Suzuki. 1992. Sequence comparison among
muscle-specific calpain, p94, and calpain subunit. Biochim.
Biophy. Acta. 1160:55-62.
Sorimachi, H., N. Toyama-Sorimachi, T. C. Saido, H. Kawasaki,
H. Sugita, M. Miyasaka, K. Arahata, S. Ishiura and K.
Suzuki. 1993a. Muscle-specific calpain, p94, is degraded by
autolysis immediately after translation, resulting in
disappearance from muscle. J. Biol. Chem. 268:10593-10605.
Sorimachi, H., S. Ishiura and K. Suzuki. 1993b. A novel tissue-
specific calpain species expressed predominantly in the
stomach comprises two alternative splicing products with
and without Ca2+-binding domain. J. Biol. Chem. 268:19476-
19482.
Sorimachi, H., K. Kinbara, S. Kimura, M. Takahashi, S. Ishiura,
N. Sorimachi, H. Shimada, K. Tagawa, K. Maruyama and K.
Suzuki. 1995. Muscle-specific calpain, p94, responsible for
limb gridle muscular dystrophy type 2A, associates with
connectin through IS2, a p94-specific sequence. J. Biol.
Chem. 270:31158-31162.
Sorimachi, H., S. Ishiura and K. Suzuki. 1997. Structure and
physiological function of calpains. Biochem. J. 328:721-732.
Sparatore, B., M. Passalacqua, A. Pessino, E. Melloni, M.
Patrone and S. Pontremoli. 1994. Modulation of the
intracellular Ca2+-dependent proteolytic system is
critically correlated with the kinetics of differentiation
of murine erythroleukemia cells. Euro. J. Biochem. 225
(1):173-178.
Speck, P. A., K. M. Collingwood, R. G. Bardsley, G. A. Tucker,
R. S. Gilmour and P. J. Buttery. 1993. Transient changes in
growth and in calpain and in calpastatin expression in
ovine skeletal muscle after short-term dietary inclusion
of cimaterol. Biochimie. 12: 917-923.
Strickland, Sidney., J. Huarte, D. Belin, A. Vassalli, R. J.
Rickles and J. D. Vassalli. 1988. Antisense RNA directed
against the 3’ noncoding region prevents dormant mRNA
activation in mouse oocytes. Science 241:680-684.
Suzuki, K. 1987. Calcium-activated neutral protease: domain
structure activated regulation. Trends Biochem. Sci. 12:
103-105.
Suzuki, K., S. Imajoh, Y. Emori, H. Kawasaki, Y. Minami and S.
Ohno. 1987. Calcium-activated neutral protease and its
endogenous inhibitor. Activation at the cell membrance and
biological function. FEBS Lett. 220:271-277.
Suzuki, K., S. Imajoh, Y. Kawasaki, Y. Minami and S. Ohno.
1988. Regulation of activity of calcium-activated neutral
protease. Adv. Enzyme Reg. 27: 153-169.
Suzuki, K., and S. Ohno. 1990. Calcium-activate neutral
protease-structure-function relationship and functional
implications. Cell Structure and Function 15: 16.
Suzuki, K. 1991. Nomenclature of calcium dependent
proteinase. Biophy. Biochim. Acta. 50:483-484.
Tagawa, K., C. Taya, Y. Hayashi, M. Nakagawa, Y. Ono, R.
Fukuda, H. Karasuyama, N. Toyama-Sorimachi, Y. Katsui, S.
Hata, S. Ishiura, I. Nonaka, Y. Seyama, K. Arahata, H.
Yonekawa, H. Sorimachi and K. Suzuki. 2000. Myopathy
phenotype of transgenic mice expressing active site-mutated
inactive p94 skeletal muscle-specific calpain, the gene
product responsible for limb girdle muscular dystrophy type
2A. Human Molecular Genetics. 9(9):1393-1402.
Takio, K. T., Towatori, N. Katunuma, D. C. Teller and K.
Tirani. 1983. Homology of amino acid sequences of rat liver
cathepsin B and H with that of papain. Proc. Natl. Acad.
Sci. U.S.A. 80: 3666-3670.
Takano, E., N. Yumoto., R. Kannagi and T. Murachi. 1984.
Molecular diversity of calpastatin in mammalian organ.
Biochem. Biophys. Res. Commun. 136:1090-1096.
Temm-Grove, C. J., D. Wert, V. F. Thompson, R. E. Allen and D.
E. Goll. 1999. Microinjection of calpastatin inhibits
fusion in myoblast. Exp. Cell Res. 247(1): 293-303.
Theopold, U., M. Pinter, S. Daffre, Y. Tryselius, P. Friedrich,
D. R. Nassel and D. Hultmark. 1995. CalpA, a Drosophila
calpain homolog specifically expressed in a small set of
nerve, midgut, and blood cells. Mol. & Cell. Biol. 15:824-
834.
Tomita, N., R. Morishita, J. Higaki, M. Aoki, Y. Nakamura, H.
Mikami, A. Fukamizu, K. Murakami, Y. Kaneda and T.
Ogihara.1995. Transient decrease in high blood pressure by
in vivo transfer of antisense oligodeoxynucleotides against
rat angiotensinogen. Hypertension 26: 131-136.
Tompa, P., Y. Emori, H. Sorimachi, K. Suzuki and P. Friedrich.
2001. Domain III of calpain is a Ca2+-regulated
phospholipid-binding domain. Biochem. Biophy. Res. Commun.
280:1333-1339.
Tsujinaka, T., J. Fujita, C. Ebisui, M. Yano, E. Kominami, K.
Suzuki., K. Tanaka, A. Katsume, Y. Ohsugi, H. Shiozaki and
M. Monden. 1996. Interleukin 6 receptor antibody inhibits
muscle atropy and modulates proteolysis systems in
interleukin 6 transgenic mice. J. Clin. Invest. 97:244-249.
Twigg, A. J., and D. Sherratt. 1980. Trans-complementable copy
number mutants of plasmid ColE1. Nature 283: 216-218.
Wall, R. J., V. G. Pursel, R. E. Hammer and R. L. Brinster.
1985. Development of porcine ova that were centrifuged to
permit visualization of pronuclei and nuclei. Bio. Repro.
32: 645-651.
Wall, R. J., and H. W. Hawk. 1988. Development of centrifuged
cow zygotes cultured in rabbit oviducts. J. Repro. Fert.
82: 673-680.
Wall, R. J., and G. E. Seidel. 1992. Transgenic farm animal- a
critical analysis. Theriogenology 38: 337-357.
Whipple, G., and M. Koohmaraie, 1991. Effects of animal age on
endogenous proteinase activities and their relationship
with muscle growth in three different ovine muscles. J.
Anim. Sci. 69 (Suppl. 1):336 (Abstr.) .
Whipple, G., and M. Koohmaraie, 1992. Effect of lamb age,
muscle type, and 24-hour activity of endogenous proteinases
on postmortem proteolysis. J. Anim. Sci. 70:798-804.
Wolfe, F. H., S. K. Sathe, D. E. Goll, W. C. Kleese, T.
Edmunds, and S. M. Duperret. 1989. Chichen skeletal muscle
has three Ca2+-dependent proteinase. Biochim. Biophys. Acta
998: 236-250.
Wormington, W. M. 1986. Stable repression of ribosomal protein
L1 synthesis in Xenopus oocytes by microinjection of
antisense RNA. Proc.Natl. Acad.Sci.U.S.A.83: 8639-8643.
Yoshimura, N., T. Murachi, R. Health, J. Kay, B. Jasani and G.
R. Newman. 1986. Immunogold electronmicroscopic
localization of calpain I in skeletal muscle of rats. Cell
Tissue Res. 244: 265-270.
Zeman, R. J., T. Kameyama, K. Matsumoto, P. Bernstein and J. D.
Etlinger. 1985. Regulation of protein degradation in muscle
by calcium: Evidence for enhanced non-lysosomal proteolysis
associated with elevated cytosolic calcium. J. Biol. Chem.
260: 13619-13624.
Zhang, W., Q. Lu, Z-J. Xie and R. L. Mellgren. 1997. Inhibition
of the growth of W138 fibroblasts by benzyloxycarbonyl-Leu-
Leu-Tyr diazomethyl ketone: evidence that cleavage of p53
by a calpain-like protease is necessary for G1 to S-phase
transition. Oncogene 14:255-263.
Zimmerman, U. P., and W. W. Schlaepfer. 1991. Two-stage
autolysis of the catalytic subunit initiates activation of
calpain I. Biochim. Biophys. Acta 1078:192-198.
Zon, G. 1990. Innocations in the use of antisense
oligonucleotides. AIDS: anti-HIV agents. Therapies and
Vaccines 616: 161-172.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top