跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 19:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李嘉真
論文名稱:以微波消化和石墨式原子吸光法測定頭髮中鈹之研究
論文名稱(外文):A Study on the Determination of Beryllium in Human Hair by Using Microwave Digestion Followed by the Measurement with Graphite-Furnace Atomic Absroption Spectrophotometry
指導教授:郭茂松郭茂松引用關係
指導教授(外文):Kuo Mao-Sung
學位類別:碩士
校院名稱:東海大學
系所名稱:環境科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:105
中文關鍵詞:頭髮
外文關鍵詞:HairBeryllium
相關次數:
  • 被引用被引用:3
  • 點閱點閱:447
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:1
鈹及其化合物應用的範圍相當廣泛,可能會藉由呼吸或飲食的方式進入人體,對人體造成急性或慢性的危害;由於鈹及其化合物對人體可能引起致癌性,因此美國環保署將其列為Group B2。但是,目前我國對環境中鈹之可許濃度及檢測方法尚未公告,故本研究嘗試使用密閉式微波消化法(closed-vessel microwave digestion)配合石墨式原子吸光法(GFAAS)來測定人體頭髮中鈹之含量和濃度,以作為檢測人體受到鈹及其化合物危害的指標。
本研究使用0.050 g頭髮樣品,放入微量分析鐵氟龍瓶(約7 mL)中,加入750 μL濃硝酸,在室溫下靜置1小時後,打開消化瓶瓶蓋,先將反應生成的部分NO2氣體排除。再將消化瓶瓶蓋鎖緊,放入大的鐵氟龍(120 mL)瓶中(內裝有約10 mL的純水),然後置於微波消化的系統中加溫消化。當鐵氟龍瓶冷卻至室溫後,再加入30 µL過氧化氫於微量樣品鐵氟龍消化瓶中,再用微波消化系統做第二階段的消化。當鐵氟龍瓶冷卻至室溫後,以NH3(aq)調整消化液之pH值至5.0-6.0,加入9.0 mL 5.0 M之醋酸銨緩衝溶液(pH=6.0)和60 µL的乙醯丙酮(acac),混合約1 h,流經一個自製的C18 cartridge(填裝有200 mg C18 particle, Waters Co.),用甲醇將[Be(acac)2]之螯合物洗出,並定量至1.00 mL。混合後,取出20 µL注入GFAAS測定鈹之含量。本方法的偵測極限為0.10 ng,相當於2.0 (ng/g);最低可準確被測得的量為0.33 ng,相當於6.6 (ng/g);檢量線之線性可達5.00 ng,相當於100 (ng/g)。以標準添加法測得頭髮樣品(#1)中鈹的含量為0.28±0.04 ng,相當於濃度為5.6±0.8 (ng/g),添加1.00 ng Be2+之回收率約為102±1%。
使用本方法,測試頭髮標準樣品(GBW 07601)中的鈹,所得的濃度為62.4±1.4 (ng/g),落在certified value 63±15 (ng/g)之範圍內,表示本方法之準確度良好。
Beryllium and its compounds have been widely used in recent years and they may enter human bodies by inhalation and diet. Beryllium may cause acute or chronic disease and is probably carcinogenic to human. Hence, beryllium is classified by USEPA in Group B2. However, the maximum allowable contamination level has not been regulated in Taiwan. The purpose of the thesis is to develop a method to determine the contents of beryllium in human hair by using closed-vessel microwave digestion followed by the measurement with GFAAS.
An amount (0.050 g) of hair was placed in a 7 mL teflon micro-reaction vessel. After addition of conc. HNO3 (750 mL), the mixture was digested at 90℃ for 10 min. Then a small amount (30 mL) of H2O2 was added and further digested at 90℃ for another 10 min in order to completely decompose the matrix in hair. The pH of the acidic hair mixture was adjusted to 5-6 by NH3(aq). After adding 60 mL of acetylacetone (acac) and 9.0 mL of 5.0 M ammonium acetate buffer (pH=6), the mixture was sonicated and then allowed to stand at room temperature for about 1 h to form Be(acac)2 chelate. The chelate was preconcentrated on a homemade C18 cartridge (200 mg C18 particle, Waters Co.) and was eluted with methanol and adjusted to 1.00 mL. A portion (20 mL) was introduced into a graphite cuvette and was atomized according to a temperature program. The method detection limit (3 s ) was 0.10 ng [ or 2.0 (ng/g)] of Be(II). The limit of quantitation (LOQ) was 0.33 ng [ or 6.6 (ng/g)] of Be(II).The calibration graph was linear up to 5.00 ng [ or 100 (ng/g)] of Be(II). An amount (0.28±0.04 ng) of Be2+ was measured in human hair (sample #1) by using the standard addition method, which corresponds to the conc. of 5.6±0.8 (ng/g). Recoveries of (102±1)% were obtained after spiking 1.00 ng Be2+ in the hair sample. Concentrations of 62.4±1.4 (ng/g) were obtained when testing a certified reference material of human hair (GBW 07601) with certified values of 63±15 (ng/g). It is concluded that the proposed method provides an accurate technique for the measurement of Be2+ in human hair.
總 目 錄
摘要....................................................i
總目錄................................................iii
表目錄................................................vii
圖目錄...............................................viii
第一章前言
一﹑鈹(Be)的性質用途.................................1
二﹑鈹的污染來源與對人體的傷害.........................2
三﹑鈹的相關法令規定...................................4
四﹑石墨式原子吸收光譜儀的基本原理.....................5
1. 中空陰極燈管.......................................6
2. Zeeman背景校正系統.................................7
3. 基質修飾劑.........................................9
4. 合適加溫程式......................................10
(1) 乾燥.............................................10
(2) 灰化.............................................10
(3) 原子化...........................................11
(4) 清除.............................................11
五﹑適當的前處理步驟..................................11
1. 微波消化..........................................12
2. 固相萃取..........................................13
六﹑研究動機..........................................14
第二章文獻回顧
一﹑頭髮中鈹的分析方法................................16
二﹑測定頭髮時所使用的消化步驟........................24
三﹑選用acetylacetone作為Be(II)之螯和劑...............26
四﹑選用固相萃取法作為前濃縮步驟......................28
1. Condition.........................................28
2. Load..............................................30
3. Rinse.............................................30
4. Elute.............................................30
第三章儀器與藥品
一﹑儀器設備及材料....................................31
二﹑藥品與試劑........................................34
三﹑玻璃器皿之清洗....................................36
四﹑實驗步驟..........................................37
1. 藥品和溶液之配製..................................37
2. 頭髮樣品之採樣、保存及
添加已知量鈹於頭髮中之配製.......................38
3. 頭髮中鈹的測定方法................................39
4. 檢量線之配製......................................41
(1) 使用標準添加法及經微波消化的方式.................41
(2) 直接將鈹配製在甲醇中之檢量線.....................42
5. 本方法應用於測定火力發電廠員工及
附近居民頭髮中的鈹...............................43
6. 頭髮中鈹經C18 cartridge之固相濃縮步驟.............44
7. 石墨式原子吸光儀之設定條件
及頭髮樣品之定量分析.............................46
8. 以添加回收率作為本方法可行性之評估............... 47
第四章結果與討論
一﹑微波消化條件之建立................................49
1. 酸液用量之選擇....................................49
2. 酸液種類之選擇....................................50
3. 消化溫度及時間的選擇..............................51
4. 過氧化氫用量的選擇................................53
二﹑固相濃縮萃取沖提體積之比較........................54
三﹑移除部分頭髮基質的干擾物..........................56
四﹑石墨式原子吸光儀加溫程式之探討....................60
1. 乾燥步驟之探討....................................60
2. 灰化步驟之探討....................................62
3. 原子化步驟之探討..................................64
五﹑分析條件之建立....................................65
1. 醋酸銨緩衝溶液pH值之選擇..........................65
2. 醋酸銨緩衝溶液用量之選擇..........................66
3. 乙醯丙酮(acac)用量之選擇........................68
4. 測定頭髮中Be2+的檢量線和方法偵測極限..............70
5. 回收率測試........................................77
6. 使用頭髮標準參考樣品(GBW07601)測試
本方法之準確度...................................78
7. 測定實際頭髮樣品(Samples #2-#5)中鈹之濃度.......79
8. 實際頭髮樣品(Samples #2-#5)之回收率測試.........81
9. 人體頭髮樣品與人體尿液或血清樣品金屬含量之比較....82
第五章結論與建議....................................83
參考文獻...............................................86
附錄一 頭髮標準參考樣品(GBW07601)之成分.............101
表目錄
表1-1. 溶劑極性強度14
表2-1. 有關頭髮中、土壤中、合金中、尿液中及水中鈹
之參考文獻20
表2-2. 一些曾使用酸液分解頭髮基質之參考文獻24
表2-3. 逆相材質的固體吸附劑29
表3-1. 使用石墨式原子吸光儀測定頭髮中Be2+(濃縮於
甲醇後)的加溫程式41
表3-2. 使用石墨式原子吸光儀測定鈹之設定條件46
表4-1. 本實驗所選用SPE的操作條件56
表4-2. 使用兩階段微波消化法所得之檢量線、MDL及
頭髮樣品(#1)中鈹之含量70
表4-3. 直接將鈹配製於甲醇中所得之檢量線75
表4-4(a) 使用兩階段微波消化法測得頭髮樣品(#1)之回收率77
表4-5. 以頭髮標準參考樣品(GBW07601)測試本方法(兩階段微波消化法)之準確度78
表4-6. 以兩階段微波消化法測得頭髮樣品(#2 to #5)中鈹
之含量79
表4-4(b) 以兩階段微波消化法測得頭髮樣品(#2 to #5)中鈹之回收率81
圖目錄
圖1-1. 中空陰極燈管之構造圖7
圖1-2. 外加磁場對光譜線的影響8
圖1-3. 以Zeeman效應為基礎作為原子吸收光譜的背景校正系統9
圖1-4. 石墨爐裝置之構造圖9
圖2-1. 鈹與acac螯合物之結構圖27
圖3-1. 微量樣品鐵氟龍消化瓶39
圖3-2. 鎖瓶工具圖40
圖3-3. 固相萃取濃縮步驟裝置圖45
圖4-1. 改變濃硝酸用量對測定頭髮中鈹吸光度之影響49
圖4-2. 改變微波消化酸液種類對測定頭髮中鈹吸光度
之影響51
圖4-3. 改變微波消化溫度對測定頭髮中鈹吸光度之影響52
圖4-4. 改變加溫時間對測定頭髮中鈹吸光度之影響53
圖4-5. 在0.050 g頭髮中,添加1.00 ng Be2+為例,
改變H2O2用量對測定頭髮中鈹吸光度之影響54
圖4-6. 在0.050 g頭髮中,添加8.00 ng Be2+為例,使用
兩種固相萃取管匣濃縮Be(acac)2螯合物後,分別用不同量之甲醇流洗對測定鈹吸光度之影響55
圖4-7. 實驗流程圖58
圖4-8. 在0.050 g頭髮中,添加1.00 ng Be2+為例,流經或不流經一個移除雜質之Sep-Pak C18 cartridge對測定頭髮中鈹吸光度之影響59
圖4-9. 改變乾燥溫度對鈹吸光度之影響61
圖4-10. 改變乾燥時間對鈹吸光度之影響62
圖4-11. 改變灰化溫度對鈹吸光度之影響63
圖4-12. 改變灰化時間對鈹吸光度之影響63
圖4-13. 改變原子化溫度對鈹吸光度之影響64
圖4-14. 改變原子化時間對鈹吸光度之影響65
圖4-15. 在0.050 g頭髮中,添加1.00 ng Be2+為例,改變NH4OAc Buffer之pH值對鈹吸光度之影響66
圖4-16. 在0.050 g頭髮中,添加1.00 ng Be2+為例,改變NH4OAc Buffer之用量對鈹吸光度之影響67
圖4-17. 在0.050 g頭髮中,添加1.00 ng Be2+為例,只用濃硝酸微波消化,改變acac用量對鈹吸光度之影響68
圖4-18. 在0.050 g頭髮中,添加1.00 ng Be2+為例,用濃硝酸+H2O2作兩階段之微波消化,改變acac用量對鈹吸光度之影響69
圖4-19. (a)使用標準添加法將Be2+加入頭髮中,經濃硝酸+H2O2微波消化步驟所得頭髮中Be2+之檢量線與(b)直接將 Be2+配製於甲醇中之檢量線比較71
圖4-20. 使用兩階段微波消化法所得檢量線各點含量之代表吸收光譜72
圖4-21. 使用兩階段微波消化法求得MDL之代表吸收光譜……...74
圖4-22. 直接將鈹(Be2+)配製於甲醇中之檢量線各點含量之代表吸收光譜……………………………………………..…………...76
1.Merck Index, 10 th ed., p.166, 1983, Rahway, New Jersey.
2.E. Merian (editor), 1991, “ Metals and Their Compounds in
the Environment Occurrence, Analysis and Biological
Relevance”, pp. 775-787, VCH Publishers, New York.
3.F. A. Cotton and G. Wilkinson (editor), 1972, “Advanced
Inorganic Chemistry”, 3rd ed., pp.207-208, John Wiley and
Sons, New York.
4.“Beryllium”, World Health Organization(WHO)網站: http://www.who.int/water_sanitation_health/GDWQ/Chemicals/berylliumfull.htm, 1996, World Health Organization, Geneva.
5.B. E. Douglas, D. H. M. Daniel and J. J. Alexander (editor),
1994, “Concepts and Models of Inorganic Chemistry”, 3rd
ed., pp.225, 718-724, John Wiley and Sons, New York.
6.“特定化學物質作業主管安全衛生教育訓練教材”,民國88年修正,第
四版,pp. 25-26,中華民國工業安全衛生協會編印,台北。
7.J. T. Kretchik, 2000, “Beryllium”, Chemical Health and
Safety, 7, 40.
8.M. Sitting, 1985, “Handbook of Toxic and Hazardous Chemicals
and Carcinogens”, 2nd ed., pp.125-129, Noyes Publications,
New Jersey.
9.J. L. Burguera, M. Burguera, C. Rondón, P. Carrero, M.
R.Brunetto and Y. Petit de Peña, 2000, “Determination
of beryllium in natural and waste waters using on-line flow-
injection preconcentration by precipitation/dissolution for
electrothermal atomic absorption spectrometry”, Talanta, 52,
27.
10.W. R. Meehan and L. E. Smythe, 1967, “Occurrence of
beryllium as a trace element in environmental materials”,
Communications, 1, 839-844.
11.I. Nukatsuka, K. Sakai, R. Kudo and K. Ohzeki, 1995,
“Studies on the adsorption of trace amounts of beryllium(II)
on the surface of silica fibres from an aqueous phase for
the development of a novel enrichment technique for
electrothermal atomic absorption spectrometry”, Analyst
[London], 120, 2819-2822.
12.J. R. Merrill, M. Honda and J. R. Arnold, 1960, “Methods
for separation and determination of beryllium in sediments
and natural waters”, Anal. Chem., 32, 1420-1426.
13.B. J. alloway and D. C. Ayres (editor), 1997, 2nd ed.,
“Chemical Principles of Environmental Pollution”, pp. 49,
208, Blackie Academic and Professional, London.
14.I. A. Saleh and I. A. Doush, 1998, “Survey of trace
elements in household and bottled drinking water samples
collected in Riyadh, Saudi Arabia”, Sci. Total Environ.,
216, 181-192.
15.T. Okutani, Y. Tsuruta and A. Sakuragawa, 1993
“Determination of a trace amount of beryllium in water
samples by graphite furnace atomic absorption spectrometry
after preconcentration and separation as a beryllium-
acetylacetonate complex on activated carbon” Anal. Chem.,
65, 1273-1276.
16.劉賢祥,“植物生理學”,pp. 260-270,徐氏基金會出版。
17.M. C. Valencia, S. Boudra and J. M. Bosque-Sendra,
“Determination of trace amounts of beryllium in water by
solid-phase spectrophotometry” Analyst, 1993, 118, 1333-
1336.
18.“Beryllium and compounds”, USEPA網站:
http://www.epa.gov/ttn/uatw/hlthef/berylliu.html
19.US Department of Health and Human Services, “Registry of
Toxic Effects of Chemical Substances”, 1993, National
Toxicology Information Program, National Library of
Medicine, Bethesda.
20.Agency for Toxic Substances and Disease Registry (ATSDR),
1992, “Toxicological Profile for Beryllium (draft)”, U. S.
Public Health Service, U. S. Department of Health and Human
Service, Atlanta, Georgia.
21.S. E. Manahan, 1994, “Environmental Chemistry”, 6th ed.,
p. 316, Lewis Publications, Ann Arbor, Michigan.
22.B. L. Carson, H. V. Ellis III and J. L. McCann, 1986,
“Toxicology and Biological Monitoring”, p. 39, Chelsea, MI,
Lewis Publisher.
23.饒連財(編著), 1985, “環境毒物學”, p.183, 東海大學環境科技
研究中心, 台灣省台中市.
24.S. J. S. Flora, S. Mathur and R. Mathur, 1995, “Effects of
meso-2,3-dimercaptosuccinic acid or 2,3-dimmer- captopropane
1-sulfonate on beryllium-induced biochemical alterations and
metal concentration in male rats”, Toxicology, 95, 167-175.
25.APHA, 1992 “Standard Methods for the Examination of Water
and Wastewater”, 18th ed., editors A. E. Greenberg, L. S.
Clescei and A. D. Earon, p.3-53, Washington, D. C.
26.“Current drinking water standards”, USEPA網站:
http://www.epa.gov/safewater/mcl.html
27.J. Kubová, V. Nevoral and V. Streško, 1994,
“Determination of beryllium trace contents in mineral waters
after preconcentration on a chelating ion-exchanger”,
Fresenius'' J. Anal. Chem, 348, 287-290.
28.B. Frengstad, A. K. M. Skrede, D. Banks, J. R. Krog and U.
Siewers, 2000, “The chemistry of Norwegian groundwaters:
III. The distribution of trace elements in 476 crystalline
bedrock groundwaters, as analysed by ICP-MS techiques”,
Sci. Total Environ., 246, 21-40.
29.H. Vanhoe, C. Vandecasteele, B. Desmet and R. Dams, 1988,
“Determination of beryllium in environmental samples by
electrothermal atomic absorption spectrometry”, J. Anal.
At. Spectrom., 3, 703-707.
30.National Institute for Occupational Safety and Health, 1972,
Recommendations for an occupational exposure standard for
beryllium, NIOSH Criteria Document TR-003-72, PB-210-806
NTIS, U. S. Department of Commerce, Washington, D. C.
31.A. W. Stange, D. E. Hilmas and F. J. Furman, 1996,
“Possible health risks from low level exposure to
beryllium ”, Toxicology, 111, 213.
32.D. A. Skoog, J. J. Leary, 1992, “Principles of Instrumental
Analysis”, 4th ed., pp. 209-220, Philadelphia, Saunders
College Publishing.
33.D. A. Skoog, D. M. West and F. J. Holler, 1996, “Fundaments
of Analytical Chemistry”, 7th ed., pp. 611-629,
Philadelphia, Saunders College Publishing.
34.張秀英, 1996, “石墨式原子吸收光譜法測定鋁和銦之研究”, 靜宜
大學應用化學研究所碩士論文, 台中.
35.葉榮泰,1996,“科儀新知”,pp.50-58.
36.紀柏享,楊末雄,1998,“微波消化之方法與應用”, Chemistry
〔R. O. C.〕, 56, 269-284.
37.H. M. Kington and L. B. Jassie, 1986, “Microwave energy for
acid decomposition at elevated temperatures and pressures
using biological and botanical sample”, Anal. Chem., 58,
2534-3541.
38.F. E. Smith and E. A. Arsenault, 1996, “Microwave-assisted
sample preparation in analytical chemistry”, Review,
Talanta, 43, 1207-1268.
39.K. J. Lamble and S. J. Hill, 1998, “Microwave digestion
procedures for environmental matrices”, Critical Review,
Analyst, 123, 103R-133R.
40.R. N. Sah and R. O. Miller, 1992, “Spontaneous reaction for
acid dissolution of biological tissues in closed vessels”,
Anal. Chem., 64, 230-233.
41.S. Baldwin, M. Deaker and W. Maher, 1994, “Low-volume
microwave digestion of marine biological tissues for the
measurement of trace elements”, Analyst, 119, 1701-1704.
42.D. Rood, 1995, “The use of solid phase extraction for
environmental samples”, In Quality Assurance in
Environmental Monitoring:Instrumental Methods, eds.
Snbramanian, G., VCH Publishers , New York.
43.M. F. Garcia, R. P. Garcia, N. B. Garcia and A. Sanz-Medel,
1994, “On-line preconcentration of inorganic mercury and
methylmercury in sea water by sorbent-extraction and total
mercury determination by cold vapor atomic absorbance
spectrometry”, Talanta, 41, 1833-1839.
44.K. Z. Taylor, D. S. Waddell, E. J. Reiner and K. A.
MacPherson, 1995, “Direct elution of solid phase extraction
disks for the determination of polychlorinated dibenzo-p-
dioxins and polychlorinated dibenzofurans in effluent
samples”, Anal. Chem., 67, 1186-1190.
45.D. E. Hughes and K.E. Gumton, 1995, “Representing isocratic
multicomponent solid-phase extraction data by an extension
of liquid- liquid extraction theory”, Anal. Chem., 67, 1191-
1196.
46.黃寶慧、李茂榮,1998,“固相萃取技術”, Chemistry 〔R. O.
C.〕, 56, 319-326.
47.A. J. Hurlbut, 1976, “Determination of beryllium in urine,
hair, fingernail and faecal samples by flameless atomic-
absorption spectrometry”, U. S. Energy Res. Dev. Adm. Rep.,
RPF- 2443, 6.
48.A. J. Hurlbut, 1978, “Determination of beryllium in
biological tissues and fluids by flameless atomic-absorption
spectrometry”, At. Absorpt. Newsl., 17, 121-124.
49.R. Nakashima, 1978, “Determination of beryllium in
biological materials by flameless atomic-absorption
spectrometry”, Bunseki Kagaku, 27, 185-188.
50.Y. Hayashibe, F. Watai, Y. Enoki, K. Oguma and R. Kuroda,
1989, “Determination of trace beryllium in biological
materials by a combined ion-exchange-graphite furnace atomic
absorption spectrometry”, Anal. Sci., 5, 531-533.
51.L. Shoupu, Z. Mingoiao and D. Chuanyue, 1994, “Separation
and determination of trace amounts of beryllium (II),
aluminium(III) and chromium(III) with chromotrope 2C
chelates by RP-HPLC”, Talanta, 41, 279-282.
52.H. N. Madbli and J. Cholak, 1969, “Gas-chromatographic
determination of beryllium in biological materials and in
air”, Envir. Sci. Technol., 3, 927-930.
53.W. R. Wolf, M. L. Taylor, B. M. Hughes, T.O. Tiernan and R.
E. Sievers, 1972, “Determination of chromium and beryllium
at the picogram level 〔in biological and environment
samples〕 by gas chromatography-mass spectrometry”, Anal.
Chem., 44, 616-618.
54.T. Stiefgl, K. Schulze, G. Toelg and H. Zorn, 1976,
“Determination of beryllium in biological materials by
flameless atomic-absorption spectrometry”, Anal. Chim.
Acta, 87, 67-78.
55.J. L. Burguera, M. Burguera, C. Rondón and P. Carrero,
1999, “Semi-permanent lutetium modifier for determination
of beryllium in urine by electrothermal atomic absorption
spectrometry”, Spectrochim. Acta, Part B, 54, 1743-1753.
56.H. C. Wang, H. W. Peng and M. S. Kuo, 2001, “Determination
of beryllium and selenium in urine and of selenium in human
serum by graphite-furnace atomic absorption
spectrophotometry”, Anal. Sci., 17, 527-532.
57.W. F. Schmidt and F.Dietl, 1988, “Determination of
beryllium in plants by means of flameless atomic absorption
with zirconium-coated and non-coated graphite tubes”,
Fresenius Z. Anal. Chem., 329, 853-855.
58.H. W. Peng and M. S. Kuo, 2000, “Determination of trace
amounts of beryllium(II) in drinking water and of beryllium
vapor in air by graphite-furnace atomic absorption
spectrophotometry using acetylacetone as a chelating
agent”, Anal. Sci., 16, 157-161.
59.C. B. Rhoades, 1996, “Clean laboratory chemistry for the
microwave-assisted digestion of botanical samples”, J.
Anal. At. Spectrom., 11, 751-757.
60.H. B. Singh, N. K. Agnihotri and V. K. Singh, 1998,
“Determination of trace amounts of beryllium using
derivative spectrophotometry in non-ionic micellar medium”,
Talanta, 47, 1287-1296.
61.M. Meneses, J. M. Llobet, S. Granero, M. schuhmacher and J.
L. Domingo, 1999, “Monitoring metals in the vicinity of a
municipal waste incinerator: temporal variation in soil and
vegetation”, Sci. Total Environ., 226, 157-164.
62.Y. Su, Z. Jin, Y. Duan, M, Koby, V. Majidi, J. A. Olivares
and S. P. Abeln, 2000, “Highly sensitive beryllium
detection with microwave plasma source atomic emission
spectrometry”, Anal. Chim. Acta, 422, 209-216.
63.W. Bashir and B. Paull, 2001, “Sensitive and selective ion
chromatographic method for the determination of trace
beryllium in water samples”, J. Chromatogr. A, 910, 301-
309.
64.B. B. Pilar, M. P. Antonio and B. B. Adela, 2000,
“Factorial designs for Cd, Cr, Hg, Pb and Se ultrasound-
assisted acid leaching from human hair atomic absorption
spectrometric determination”, J. Anal. At. Spectrom.,
15,121-130.
65.C. Y. Zhou, M. K. Wong, L. L. Koh and Y. C. Wee, 1996,
“Microwave digestion of biological samples with
tetramethylammonium hydroxide and ethylenediaminete-
traacetic acid for element determination”, Talanta, 43,
1061-1068.
66.A. S. Ribeiro, A. J. Curtius and D. Pozebon, 2000,
“Determination of arsenic, cadmium, nickel and lead in human
hair by electrothermal atomic absorption spectrometry after
sample treatment with tetramethylammonium hydroxide”,
Microchem. J., 64, 105-110.
67.B. B. Pilar, M. P. Antonio, R. B. Teresa, M. P. Jorge and B.
B. Adela, 1996, “Use of aqueous slurry sampling for the
determination of lead in human hair samples by
electrothermal atomic absorption spectrometry”, Talanta,
43, 1099-1107.
68.J. S. Alvarado, T. J. Neal, L. L. Smith and M. D. Erickson,
1996, “Microwave dissolution of plant tissue and the
subsequent determination of trace lanthanide and actinide
elements by electrothermal coupled plasma-mass
spectrometry”, Anal. Chim. Acta, 322, 11-20
69.K. J. Lamble and S. J. Hill, 1996, “Arsenic speciation in
biological samples by on-line high performance liquid
chromatography-microwave digestion-hydride generation-
atomic absorption spectrometry”, Anal. Chim. Acta, 334, 261-
270.
70.I. Harrision, D. Littlejone and G. S. Fell, 1995,
“Determination of selenium in human hair and nail by
electrothermal atomic absorption spectrometry”, J. Anal.
At. Spectrom., 10, 215-219.
71.X. Dong, Y. Nakaguchi and K. Hiraki, 1998, “Determination
of chromium, copper, iron, manganese and lead in human hair
by graphite furnace atomic absorption spectrometry”, Anal.
Sci., 14, 785-789.
72.M. Yin and B. Li, 1998, “Determination of rare earth
elements in human hair and wheat flour reference materials
by inductively coupled plasma mass spectrometry with dry
ashing and microwave digestion”, Spectromchim. Acta, Part
B, 53, 1447-1454.
73.C. G. Bruhn, J. Y. Neira, G. D. Valenzuela and J. A.Nobrega,
1999, “Determination of cadmium in hair and blood by
tungsten coil electrothermal atomic absorption spectrometry
with chemical modifiers”, Talanta, 48, 537-549.
74.R. Knight, S. J. Haswell, S. W. Lindow and J. Batty, 1999,
“Determination of mercury in hair by coupled CVAA-ICP-MS”,
J. Anal. At. Spectrom., 14, 127-129.
75.B. B. Pilar, F. N. Susana, M. P. Antonio and B. B. Adela,
1999, “Usefulness of enzymatic hydrolysis procedures based
on the use of pronase E as sample pre-treatment for multi-
element determination in biological materials”, J. Anal.
At. Spectrom., 14, 1893-1900.
76.N. B. A. Majed and M. R. Preston, 2000, “Factors
influencing the total mercury and methyl mercury in the hair
of the fishermen of Kuwait”, Environ. Pollut., 109, 239-250.
77.E. Hać, M. Krzyzanowski and J. Krechniak, 2000, “Total
mercury in human renal cortex, liver, cerebellum and hair”,
Sci. Total Environ., 248, 37-43.
78.P. B. Barrera, M. J. L. Alonso, A. B. Barrera, J. A. Cocho
de Juan and J. M. F. Bermúdez, 2000, “Selenium
determination in mother and child''s hair by electrothermal
atomic absorption spectrometry”, Forensic Sci. Internation,
107, 149-156.
79.L. Rahman, W. T. Corns, D. W. Bryce and P. B. Stockwell,
2000, “Determination of mercury, selenium, bismuth, arsenic
and antimony in human hair by microwave digestion atomic
fluorescence spectrometry”, Talanta, 52, 833-843.
80.科安企業有限公司,1999,“MARS 5微波消化應用手冊(A)”。
81.J. A. Adam, E. Booth and J. D. H. Strickland, 1952, “The
determination of microgram amounts of beryllium using acetyl
acetone”, Anal. Chim. Acta, 6, 462-471.
82.A. Ringbom, 1963, “Complexation in Analytical Chemistry”,
p. 321, Interscience Publishiers, John Wiley and Sons, New
York.
83.Sep-Pak Cartridge:instruction sheet, Waters Inc., Milford,
Massachusetts.
84.Waters Sep-Pak Cartridge:care and use manual, 1993, Waters
Inc., Milford, Massachusetts.
85.Sample preconcentraction products for solid extraction,
Waters Inc., Milford, Massachusetts.
86.I. Equiarte, R. M. Alonso, R. M. Jimenez, 1996,
“Determination of Total Arsenic in Soils by Differential-
pulse Cathodic Stripping Voltammetry”, Analyst, 121, 1835-
1838.
87.鄭翰鈞,2000,“以石墨式原子吸光法測定土壤中汞之研究” 私立東
海大學環境科學研究所碩士論文,台中.
88.顏瑞容,2000,“以石墨式原子吸光法測定土壤中鈹之研究” 私立東
海大學環境科學研究所碩士論文,台中.
89.彭顯文,1999,“以石墨電熱式原子吸光法測定飲用水中、空氣中及
人體尿液中鈹之研究 ”, 東海大學環境科學系碩士論文, 台中.
90.B. B. Pilar, V. C. M. Eva, M. P. Antonio and B. B. Adela,
1999, “Rapid acid leaching and slurry sampling procedures
for the determination of methyl-mercury and total mercury in
human hair by electrothermal atomic absorption
spectrometry”, Anal. Chim. Acta, 398, 263-272.
91.B. B. Pilar, M. N. Oscar, M. P. Antonio and B. B. Adela,
2000, “Experimental designs in the optimization of
ultrasonic bath-acid-leaching procedures for the
determination of trace elements in human hair samples by
atomic absorption spectrometry”, Forensic Sci.
International, 107, 105-120.
92.I. N. Voloschik, M. L. Litvina and B. A. Rudenko, 1995,
“Ion chromatographic determination of beryllium in rock and
waste waters with a chelation sorbent and conductimetric
detection”, J. Chromatogr. A, 706, 315-319.
93.Y. Ren, Z. Zhang, Y. Ren , W. Li, M. Wang and G. Xu, 1997,
“Diagnosis of lung cancer on metal contents in serum and
hair using multivariate methods”, Talanta, 44, 1823-1831.
94.R. Wennig, 2000, “Potential problems with the
interpretation of hair analysis results”, Forensic Sci.
International,, 107, 5-12.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top