(54.236.58.220) 您好!臺灣時間:2021/02/27 11:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何盈蒼
研究生(外文):Ying-Tsang Ho
論文名稱:好氧處理脫硝菌株THU之分離與研究及其同時硝化-脫硝反應之探討
論文名稱(外文):Isolation, characterization and investigation of strain THU, an aerobic denitrifying bacterium capable of simultaneous nitrification-denitrification reaction
指導教授:黃啟裕黃啟裕引用關係
指導教授(外文):Chi-Yu Huang
學位類別:碩士
校院名稱:東海大學
系所名稱:環境科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:158
中文關鍵詞:脫硝菌好氧脫硝同時硝化-脫硝反應褐藻膠鈣固定化
外文關鍵詞:denitrifying bacteriaaerobic denitrificationsimultaneous nitrification-denitrification (SND)alginateimmobilization
相關次數:
  • 被引用被引用:3
  • 點閱點閱:136
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究從台中市工業區污水處理廠以及台北市民生污水處理廠之污泥中分離出數株純種之脫硝菌株,並從中擇一脫硝效率最佳者 (暫訂名為THU菌株) 對其進行生化特性之研究,寄望能對脫硝菌株的特性與脫硝反應能有更深的了解,並進一步將菌株以固定化處理方式來提高其脫硝效率。
最後選出之脫硝菌株THU為一革蘭氏陰性桿菌,具有鞭毛,在絕對厭氧的環境中無法生長,為一絕對好氧性脫硝菌。THU菌株在溶氧濃度約為 5.3 mg/L 的情況下依然能進行脫硝作用,生長過程中能同時消耗氧氣及硝酸氮,並將硝酸氮轉換成氮氣而排放至環境中,而經由 pH 及ORP的即時監控亦可以觀察到脫硝反應進行的過程。而THU菌株進行脫硝反應時的最佳溫度為37oC,最佳 pH 為8.05,最適利用碳源為醋酸鈉。當碳氮比控制為7時,培養基中的溶解性有機碳與硝酸氮均可同時去除完畢,而經由生長及脫硝動力模式的推求,可以得到THU菌株之最大比生長速率為0.58 hr-1,最大比脫硝速率為0.7 mg-NO3/mg-VSS·hr。
當培養基中氮源置換成氯化氨後,發現THU菌株亦可以利用氨氮進行生長,並可進一步將 NH4+ 經由 NO3? 轉換至 N2O,顯示THU菌株是一株可進行同時硝化-脫硝 (SND) 反應之菌株,且當NH4+起始濃度為80 mg/L 時,總氮去除率幾乎可達100%。
利用 Alginate 進行固定化生物擔體用以去除硝酸氮時,發現菌株經固定化後之硝酸氮去除效率比懸浮系統中之效率有顯著的提升,而擔體強度不足的問題藉由聚乙二醇及聚乙烯亞胺的添加後可以得到大幅的改善。
Several strains of denitrifying bacteria were isolated from wastewater treatment plant of Taichung industrial park and Men-Shen sewage treatment plant in this study. In order for further investigation of the characteristics of denitrifying bacteria and denitrification process, an isolate, tentatively named strain THU was chosen and its biochemical characteristics were investigated in this study. Immobilization of strain THU for nitrate removal was done to improve the denitrification efficiency.
Strain THU was a gram-negative, strictly aerobic bacterium with monotrichous flagellum. It could not grow in strictly anaerobic conditions. Denitrification process still occurred even when the concentration of dissolved oxygen was 5.3 mg/L. Nitrate was reduced to nitrogen gas by strain THU. Oxygen and nitrate-nitrogen were consumed simultaneously during denitrification process. The optimal temperature of strain THU to reduce nitrate was 37oC, the optimal pH was 8.05, and the optimal carbon source was sodium acetate. Both of nitrate and dissolved organic carbon in the medium could be removed completely when the C/N ratio was 7. The specific growth rate and the specific denitrification rate of strain THU were 0.58 hr-1 and 0.70 mg-NO3﷓-N/mg-VSS·hr, respectively.
It was found that strain THU could still grow by using ammonia when NH4Cl was used as the N source in the medium. When the initial concentration of ammonia was 80 mg/L, total nitrogen removal could be achieved by almost 100%. By the transfer of NH3 to N2O, it showed that strain THU had the capacity of nitrification and denitrification simultaneously.
After strain THU was entrapped by alginate, the nitrate removal rate by immobilization system was much better than that of suspended-growth system. The strength of the immobilized beads can be enhanced by mixing alginate with polyethyleneimine and polyethylene glycol.
第一章前 言………………………………………………1
第二章文獻回顧………………………………………………3
2.1生物除氮反應…………………………………………3
2.1.1生物脫硝反應…………………………………………5
2.1.2生物硝化反應…………………………………………9
2.1.3同硝化-脫硝反應之原理與機制……………………10
2.2脫硝作用之環境影響因子 …………………………14
2.2.1溶氧 …………………………………………………14
2.1.1.1厭氧脫硝 ……………………………………………14
2.1.1.2好氧脫硝 ……………………………………………16
2.2.2溫度 …………………………………………………22
2.2.3pH ……………………………………………………23
2.2.4碳源與碳/氮比對脫硝效率之影響…………………23
2.2.5氧化還原電位 ………………………………………25
2.3純種菌之添加對於脫硝效率之影響 ………………26
2.4固定化細胞生長系統 ………………………………27
2.4.1固定化技術之發展 …………………………………27
2.4.2固定化微生物技術之優點及限制 …………………31
2.4.3固定化處理技術之應用 ……………………………32
2.4.4以褐藻膠鈣包覆菌體之固定化處理技術 …………35
2.5研究目的 ……………………………………………36
第三章實驗方法與設計 ……………………………………37
3.1實驗流程設計 ………………………………………37
3.2菌種來源採樣 ………………………………………37
3.3菌種之分離、培養與選取 …………………………39
3.3.1菌種之分離與培養 …………………………………39
3.3.2菌種之選取 …………………………………………41
3.4菌種生化特性之探討 ………………………………41
3.4.1菌相觀察 ……………………………………………42
3.4.2生長速率 ……………………………………………42
3.4.3溫度 …………………………………………………44
3.4.4pH ……………………………………………………44
3.4.5碳源 …………………………………………………45
3.4.6碳氮比 ………………………………………………45
3.4.7基質抑制效應 ………………………………………46
3.4.8休眠細菌試驗 ………………………………………46
3.4.9絕對厭氧環境培養 …………………………………46
3.4.10Lab VIEW電腦即時監測 ……………………………47
3.4.11BNP (Biochemical Nitrogen Potential) 反應系
統 ……………………………………………………49
3.5固定化THU菌株脫硝反應……………………………50
3.5.1細菌固定化程序 ……………………………………50
3.5.2固定化生物擔體反應槽裝置 ………………………52
3.5.3固定化擔體於不同CaCl2 溶液浸泡時間下之強度
探討 …………………………………………………53
3.6菌種保存 ……………………………………………55
3.7菌種鑑定 ……………………………………………55
3.7.1鑑別染色 ……………………………………………55
3.7.2Biolog microstation system菌種鑑定 …………57
3.7.3API 20E菌種鑑定……………………………………57
3.8實驗分析項目與方法 ………………………………58
3.8.1含氮化合物之分析 …………………………………58
3.8.2溶解性有機碳 (DOC) 之測定………………………62
3.9電子顯微鏡照相 ……………………………………63
3.9.1掃瞄式電子顯微鏡照相 ……………………………63
3.9.2穿透式電子顯微鏡照相 ……………………………64
第四章結果與討論 …………………………………………66
4.1研究菌株之選取 ……………………………………66
4.2菌相觀察 ……………………………………………69
4.3菌種鑑定 ……………………………………………71
4.3.1革蘭氏染色 …………………………………………71
4.3.2Biolog 菌種鑑定……………………………………72
4.3.3API 20E 菌種鑑定 …………………………………73
4.4生化特性之探討 ……………………………………76
4.4.1休眠細菌脫硝反應 …………………………………76
4.4.2溶氧對脫硝菌株之影響 ……………………………77
4.4.3最佳化溫度 …………………………………………80
4.4.4最佳pH ………………………………………………83
4.4.5最佳碳源 ……………………………………………87
4.4.6最佳碳氮比 …………………………………………91
4.4.7細胞生長及脫硝反應動力學 ………………………95
4.4.8硝酸氮濃度抑制效應 ……………………………101
4.4.9進行脫硝反應之氧化還原電位 (Oxidation-Reduction
Potential, ORP) 及 pH 變化即時監測…………104
4.4.10脫硝產氣反應之探討………………………………107
4.4.11THU菌株與其他脫硝菌株脫硝效率之比較 ………111
4.5脫硝菌株THU進行同硝化-脫硝 (Simultaneous
Nitrification and Denitrification, SND)反應
之探討………………………………………………112
4.5.1THU菌株之硝化能力測試 …………………………112
4.5.2休眠細菌硝化反應…………………………………114
4.5.3最佳pH………………………………………………116
4.5.4進行SND反應之氧化還原電位 (Oxidation-Reduction
Potential, ORP) 及 pH 變化即時監測…………120
4.5.5SND 產氣……………………………………………124
4.6THU菌株與鑑定菌株之比較 ………………………126
4.7固定化菌株THU ……………………………………128
4.7.1褐藻膠鈣包覆THU菌株脫硝效率之探討 …………129
4.7.2不同固定化浸泡時間對擔體強度之影響…………131
4.7.3改良式固定化生物擔體……………………………134
第五章結論與建議…………………………………………138
5.1結論…………………………………………………138
5.2建議…………………………………………………140
第六章參考文獻……………………………………………141
附 錄………………………………………………………155
附錄一Biolog 鑑定系統之鑑定結果 ……………………155
附錄二THU菌株於Biolog 鑑定微盤中之培養結果………156
附錄三API 20E 鑑定系統之鑑定結果……………………157
附錄四THU菌株於API 20E鑑定帶中之培養結果…………158
Arts, P. A. M., L. A. Robertson, and J. G. Kuenen. 1995.
Nitrification and denitrification by Thiosphaera pantotropha
in aerobic chemostat cultures. FEMS Microbiology Ecology,
18: 305-316.
Averill, B. A. and J. M. Tiedje. 1982. The chemical mechanism
of microbial denitrification. FEBS Lett., 138: 8-12.
Bandpi, A. M., and D. J. Elliott. 1998. Groundwater
denitrification with alternative carbon sources. Wat. Sci.
Tech., 38: 237-243.
Bazylinski, D. A. and R. P. Blakemore. 1983. Denitrification
and assimilatory nitrate reduction in Aquaspirillum
magnetotacticum. Applied and Environmental Microbiology, 46:
1118-1124.
Bilanovic, D., P. Battistoni, F. Cecchi, P. Pavan and J. Mata-
Alvarez. 1999. Denitrification under high nitrate
concentration and alternating anoxic conditions. Wat. Res.,
33: 3311-3320.
Bothe, H., G. Jost, M. Schloter, B. B. Ward, and K. P. Witzel.
2000. Molecular analysis of ammonia oxidation and
denitrification in natural environments. FEMS Microbiology
Reviews, 24: 673-690.
Castignetti, D. and T. C. Hollocher. 1984. Heterotrophic
nitrification among denitrifiers. Applied and Environmental
Microbiology, 47: 620-623.
Chang, S. C., C. T. Fang, Y. C. Chen, P. R. Hsueh, K. T. Luh,
and W. C. Hsieh. 1998. In vitro activity of meropenem
against common pathogenic bacteria isolated in Taiwan.
Diagn. Microbiol. Infect. DIS, 32: 273-279.
Choi, J. W., H. G. Choi, and W. H. Lee. 1996. Effects of
ethanol and phosphate on emulsan production by Acinetobacter
calcoaceticus RAG-1. Journal of Biotechmology, 45: 217-225.
Cieslak, T. J., M. L. Robb, C. J. Drabick, and G. E. Fischer.
1992. Catheter associated sepsis caused by Ochrobactrum
anthropi: report of a case and review of related
nonfermentative bacteria. Clin. Infect. Dis., 14: 902-907.
Cole, J. A. and C. M. Brown. 1980. Nitrite reduction to
ammonia by fermentative bacteria: a short circuit in the
biological nitrogen cycle. FEMS Microbiol. Lett., 7: 65-72.
Csikor, Z., L. Czako, P. Mihaltz, and J. Hollo. 1996.
Complete nitrogen removal from waste and drinking water in a
fluidized-bed bioreactor. Food Sci. Technol. Int., 2: 165-
171.
Czepiel, P., P. Crill, and R. Harriss. 1995. Nitrous oxide
emissions from municipal wastewater treatment. Env. Sci.
Tech., 29: 2352-2356.
Deguchi, H. and M. Kashiwava. 1994. Study On Nitrified Liquor
Recycling Process Operations Using Polyurethane Foam Sponge
Cubes As Biomass Support Medium. Wat. Sci. Tech., 30: 143-
149.
Devlin, J. F., R. Eedy, and B. J. Butler. 2000. The effects
of electron donor and granular iron on nitrate transformation
rates in sediments from a municipal water supply aquifer.
Journal of Contaminant Hydrology, 46: 81-97.
De Vries, W., H. G. D. Niekus, H. Van berchum, and A. H.
Stouthamer. 1982. Electron transport-linked proton
translocation at nitrite reduction in Campylobacter sputorum
subspecies bubulus. Arch. Microbiol., 131: 132-139.
Dincer, A. R. and F. Kargi. 2000. Kinetics of sequential
nitrification and denitrification processes. Enzyme and
Microbial Technology, 27: 37-42.
Drtil, M., P. Nemeth, J. Buday, I. Bodik, and M. Hutnan. 1999.
Regulation of denitrification using continually measured ORP
and pH signal. Chem. Papers, 53: 75-81.
Favaloro, B., M. Sonic, P. Raffaele, I. C. Di, R. Domenico.
1998. Purification and characterization of a novel
glutathione transferase from Ochrobactrum anthropi. FEMS
Microbiology Letters 160: 81-86.
Fires, M. R., J. Zhou, J. Chee-Sanford, and J. M. Tiedje.
1994. Isolation, characterization, and distribution of
denitrifying toluene degraders from a variety of habits.
Applied and Environmental Microbiology, 60: 2802-2810.
Fuerhacker, M., H. Bauer, R. Ellinger, U. Sree, H. Schmid, F.
Zibuschka, and H. Puxbaum. 2000. Approach for a novel
control strategy for simultaneous nitrification/
denitrification in activated sludge reactors. Wat. Res., 34:
2499-2506.
Garbayo, I., A. J. Vigara, V. Conchon, V. A. P. M. Dos Santos
and C. Vílchez. 2000. Nitrate consumption alterations
induced by alginate-entrapment of Chlamydomonas reinhardtii
cells. Process Biochemistry, 36: 459-466.
Garber, E. A. E. and T. C. Hollocher. 1982. Positional
isotopic equivalence of nitrogen in N2O produced by the
denitrifying bacterium Pseudomonas stutzeri: indirect
evidence for a nitroxyl pathway. J. Biol. Chem., 257: 4705-
4708.
Gerhardt, P., R. G. E. Murray, W. A. Wood, and N. R. Krkieg.
1994. Methods for General and Molecular Bacteriology.
American Society for Microbiology, Washington, D. C.
Glass, C. and J. Silverstein. 1998. Denitrification kinetics
of high nitrate concentration water: pH effect on inhibition
and nitrite accumulation. Wat. Res., 32: 831-839.
Glass, C., J. Silverstein, and J. Oh. 1997. Inhibition of
denitrification in activated sludge by nitrite. Wat.
Environ. Res., 69: 1086-1093.
Gonzalez, L. E. and Y. Bashan. 2000. Increased growth of the
microalga Chlorella vulgaris when coimmobilized and
cocultured in alginate beads with the plant-growth-promoting
bacterium Azospirillum brasilense. Applied and Environmental
Microbiology, 66: 1527-1531.
Gómez, M. A., J. González-López, E. Hontoria-García. 2000.
Influence of carbon source on nitrate removal of contaminated
groundwater in a denitrifying submerged filter. Journal of
Hazardous Materials, 69-80.
Gupta, A. B. 1997. Thiosphaera pantotropha: a sulphur
bacterium capable of simultaneous heterotrophic nitrification
and aerobic denitrification. Enzyme and Microbial
Technology, 21: 589-595.
Gupta, A. B. and S. k. Gupta. 1999. Simultaneous carbon and
nitrogen removal in a mixed culture aerobic RBC biofilm.
Wat. Res., 33: 555-561.
Gupta, S. K. and M. Kshirsagar. 2000. Quantitative estimation
of Thiosphaera Pantotropha from aerobic mixed culture. Wat.
Res. 34: 3765-3768.
Gupta, S. K., S. Raja, and A. B. Gupta. 1994. Simultaneous
nitrification and denitrification in RBC. Environ. Technol.,
15: 143-150.
Gumaelius, L., E. D. Smith, and G. Dalhammer. 1996. Potential
biomarker for denitrification of wastewater: effect of
process variables and cadmium toxicity. Wat. Res., 30: 3025-
3031.
Hallin, S., M. Rothman and M. Pell. 1996. Adaptation of
denitrifying bacteria to acetate and methanol in activated
sludge. Wat. Res., 30: 1445-1450.
Hastings, R. C., J. R. Saunders, G.H. Hall, R. W. Pickup, and
A. J. McCarity. 1998. Application of molecular biological
techniques to a seasonal study of ammonic oxidation in a
eutrophic freshwater lake. Applied and Environmental
Microbiology, 64: 3674-3682.
Henze, M., R. Dupont, P. Grau and A. D. L. Sota. 1993. Rising
sludge in secondary settlers due to denitrification. Wat.
Res., 27: 231-236.
Her, J. J. and J. S. Huang. 1995. Influences of carbon source
and C/N ratio on nitrate/nitrite denitrification and carbon
breakthrough. Bioresource Technology, 54: 45-51.
Hess, A., B. Zarda, D. Hahn, A. Haner, D. Stax, P. Hohener and
J. Zeyer. 1997. In situ analysis of denitrifying toluene-
and m-xylene-degrading bacteria in a diesel fuel-contaminated
laboratory aquifer column. Applied and Environmental
Microbiology, 63: 2136-2141.
Hijnen, W. A., R. Voogt, H. R. Veenendaal, H. V. Jagt and V.
Kooij. 1995. Bormate reduction by denitrifying bacteria.
Applied Environmental Microbiology, 61: 239-244.
Holmes, B., M. Popoff, M. Kiredjian, and K. Kersters. 1988.
Ochrobactrum anthropi gen. nov., sp. nov. from human clinical
specimens and previously known as group Vd. International
Journal of Systematic Bacteriology, 406-416.
Holt, John G., Noel R. Krieg, Peter H. A. Sneath, James T.
Staley and Stanley T. Williams. 1994. Bergey’s Manual of
Determinative Bacteriology, 9th ed. The Williams &Wilkins
Co., Baltimore. USA.
Huang, C. Y., B. K. Patel, R. A. Mah, and L. Baresi. 1998.
Caldicellulosiruptor owensensis sp. Nov., an anaerobic,
extremely thermophilic, xylanolytic bacterium. International
Journal of Systematic Bacteriology, 48: 91-97.
Hungate, R. E. 1969. A roll tube method for cultivation of
strict anaerobes. 117-132. In: J. R. Norris and D. W.
Ribbons (ed.), Methods in Microbiology vol. 3b, Academic
Press, Inc., New York.
Jönsson, K., C. Grunditz, G. Dalhammar, and J. L. C. Jansen.
2000. Occurrence of nitrification inhibition in Swedish
municipal wastewaters. Wat. Res., 34: 2455-2462.
Jyothisri, K., V. Deepak, and M. R. Rajwswari. 1999.
Purification and characterization of a major 40 kDa outer
membrane protein of Acinetobacter baumannii. FEBS Letters,
443: 57-60.
Kelso, B. H. L., R. V. Smith, and R. J. Laughlin. 1999.
Effect of carbon substrates on nitrite accumulation in
freshwater sediments. Applied and Environmental Microbiology,
65: 61-66.
Kern, W. V., M. Oethinger, A. Kaufhold, E. Rozdzinski, and R.
Marre. 1993. Ochrobactrum anthropi bacteremia: report of
four cases and short review. Infection, 21: 306-310.
Knowles, R. 1982. Denitrification. Microbiol. Rev., 46: 43-
70.
Koops, H. P. and U. C. Möller. 1992. The lithotrophic
ammonia-oxidizing bacteria. In: The Prokaryotes, Balows, A.,
H. G. Trüper, M. Dworkin, W. Harder, and K. H. Schleifer,
(eds.), 2625-2637. Springer Verlag, New York.
Kornaros, M., and G. Lyberatos. 1998. Kinetic modeling of
Pseudomonas denitrificans growth and denitrification under
aerobic, anoxic and transient operating conditions. Wat.
Res., 32: 1912-1922.
König, A., K. Riedel and J. W. Metzger. 1998. A microbial
sensor for detecting inhibitors of nitrification in
wastewater. Biosensors & Bioelectronics, 13: 869-874.
Krul, J. M. 1976. Dissimilatory nitrate and nitrite reduction
under aerobic conditions by an aerobically and anaerobically
grown Alcaligenes sp. and by activated sludge. J. Appl.
Bacteriol., 40: 245-260.
Kshirsagar, M., A. B. Gupta and S. K. Gupta. 1995. Aerobic
denitrification studies on activated sludge mixed with
Thiosphaera pantotropha. Environ. Technol., 16: 35-43.
Laska, J., J.Wlodarczyk, and W. Zaborska. 1999. Polyaniline
as a support for urease immobilization. Journal of Molecular
Catalysis B: Enzymatic, 6: 549-553.
Lee, K. Y. and T. R. Heo. 2000. Survival of Bifidobacterium
longum Immobilized in Calcium Alginate Beads in Simulated
Gastric Juices and Bile Salt Solution. Applied and
Environmental Microbiology, 66: 869-873.
Liu, C., K. Moon, H. Honda, T. Kobayashi. 2000.
Immobilization of rice (Oryza sativa L.) callus in
polyurethane foam using a turbine blade reactor. Biochemical
Engineering Journal. 169-175.
Macy, J. M., J. E. Snellen, and R. E. Hungate. 1972. Use of
syringe methods for anaerobiosis. Am. J.Clin. Nutr., 25:
1318-1323.
Matĕjů, V., S. Čižinská, J. Krejčı and T. Janoch. 1992.
Biological water denitrification-a review. Enzyme and
Microbial Technology, 14: 170-183.
Meiberg, J. B. M., P. M. Bruinenberg, and W. Harder. 1980.
Effect of dissolved oxygen tension on the metabolism of
methylated amines in Hyphomicrobium X in the absence and
presence of nitrate: evidence for “aerobic”
denitrification. J. Gen. Microbiol., 120: 453-463.
Metealf, E., G. Techobanoglous, and F. L. Burton. 1991.
Wastewater engineering: treatment, disposal, reuse. 3rd edn.,
McGraw Hill, New York, 695-725.
Muyima, N. Y. O. and T. E. Cloete. 1995. Growth and phosphate
uptake of immobilized Acinetobacter cells suspended in
activated sludge mixed liquor. Wat. Res., 29: 2461-2466.
Nilsson, I., and S. Ohlson. 1982. Columnar denitrification of
water by immobilized Pseudomonas denitricans cells. J. Appl.
Microbiol. Iotechnol, 14: 86-96.
Pai, S. L., N. M. Chong, and C. H. Chen. 1999. Potential
applications of aerobic denitrifying bacteria as bioagents in
wastewater treatment. Bioresource Technology, 68: 179-185.
Patureau, D., N. Bernet, and R. Moletta. 1997. Combined
nitrification and denitrification in a single aerated reactor
using the aerobic denitrifier Comamonas sp. strain sgly2.
Wat. Res. 31: 1363-1370.
Patureau, D., E. Helloin, E. Rustrian, T. Bouchez, J. P.
Delgenes, and R. Moletta. 2001. Combined phosphate and
nitrogen removal in a sequencing batch reactor using the
aerobic denitrifier, Microvirgual aeroedenitrificans. Wat.
Res., 35: 189-197.
Payne, W. J. 1981. Denitrification. John Wiley & Sons, New
York.
Peddie, C. C., D. S. Mavinic and C. J. Jenkins. 1990. Use of
ORP for monitoring and control of aerobic sludge digestion.
J. Envir. Eng., 116: 231-257.
Pińar, G., K. Kovářová, T. Egli, and J. L. Ramos. 1998.
Influence of carbon source on nitrate removal by nitrate-
tolerant Klebsiella oxytoca CECT 4460 in batch and chemostat
cultures. Applied and Environmental Microbiology, 64: 2970-
2976.
Pochana, K. and J. Keller. 1999. Study of factors affecting
simultaneous nitrification and denitrification (SND). Wat.
Sci. Tech. 39: 61-68.
Prinčič, A., I. Mahen, F. Megušar, E. A. Paul and J. M.
Tiedje. 1998. Effects of pH and oxygen and ammonium
concentrations on the community structure of nitrifying
bacteria. Applied and Environmental Microbiology, 64: 3584-
3590.
Prioult, G., C. Lacroix, C. Turcotte and I. Fliss. 2000.
Simultaneous immunofluorescent detection of coentrapped cells
in gel beads. Applied and Environmental Microbiology, 66:
2216-2219.
Rajapakse, J. P. and J. E. Scutt. 1999. Denitrification with
natural gas and various new growth media. Wat. Res., 33:
3723-3734.
Reddy, M. P. 1994. Estimation of biomass concentration and
population dynamics in a CAPTOR activated sludge system.
Wat. Sci. Tech., 29: 149-152.
Robertson, L. A., and J. G. Kuenen. 1983. Thiosphera
pantotropha gen. nov. sp. nov., a facultatively anaerobic,
facultatively autotrophic sulphur bacterium. J. Gen.
Microbiol., 129: 2847-2855.
Robertson, L. A. and J. G. Kuenen. 1984a. Aerobic
denitrification-old wine in new bottles? Antonie Van
Leeuwenhoek, 50: 525-544.
Robertson, L. A., and J. G. Kuenen. 1984b. Aerobic
denitrification: A controversy revived. Arch. Microbiol.,
139: 351-354.
Robertson, L. A., J. G. Kuenen, and R. Kleijntjens. 1985.
Aerobic denitrification and heterotrophic nitrification by
Thiosphera pantotropha. Antonie van Leeuwenhoek, 51: 445.
Robertson, L. A., and J. G. Kuenen. 1988. Heterotrophic
nitrification on Thiosphaera pantotropha: oxygen uptake and
enzyme studies. J. Gen. Microbiol., 134: 857-863.
Robertson, L. A., W. J. VAN Niel, ED. Torremans, A. M. Rob, and
J. G. Kuenen. 1988. Simultaneous nitrification and
denitrification in aerobic chemostat cultures of Thiosphaera
pantotropha. Applied and Environmental Microbiology, 54:
2812-2818.
Robertson, L. A., T. Dalsgaard, N. P. Revsbech, and J. G.
Kuenen. 1995. Confirmation of “aerobic denitrification”
in batch cultures, using gas chromatography and N mass
spectrometry. FEMS Microbiology Ecology, 18: 113-120.
Robertson, L. A., and J. Gijskuenen. 1988. Heterotrophic
Nitrification in Thiosphaera pantotropha: oxygen uptake and
enzyme studies. Journal of General Microbiology, 857-863.
Schmidt, I., and E. Bock. 1997. Anaerobic ammonia oxidation
with nitrogen dioxide by Nitrosomonas eutropha. Archives of
Microbiology, 167: 106-111.
Schulthess, R. V., D. Wild, and W. Gujer. 1994. Nitric and
nitrous oxides from denitrifying activated sludge at low
oxygen concentration. Wat. Sci. Tech, 29: 123-132.
Schulthess, R. V., M. Kuhni, and W. Gujer. 1995. Release of
nitrious oxides from denitrifying activated sludge. Wat.
Sci. Tech, 30: 215-226.
Scott, K. P., D. K. Mercer, L. A. Glover, and H. J. Flint.
1998. The green fluorescent protein as a visible marker for
lactic acid bacteria in complex ecosystems. FEMS Microbiol.
Ecol., 26: 219-230.
Skerman, V. B. D., J. Lack, and N. Millis. 1951. Influence of
oxygen concentration on the reduction of nitrate by a
Pseudomonas sp. in the growing culture. Aust. J. Sci. Res.
Ser., 4: 511-525.
Suwa, Y., Y. Imamura, T. Suzuki, T. Tashiro, and Y.
Urushigawa. 1994. Ammonium-oxidizing bacteria with
different sensitives to (NH4)2SO4 in activated sludges. Wat.
Res., 28: 1523-1532.
Tanaka, K., M. Tada, T. Kimata, S. Harada, Y. Fujii, Z.
Izuguchi, N. Mori, and H. Emori. 1991. Development of new
nitrogen removal system using nitrifying bacteria immobilized
in synthetic resin pellets. Wat. Sci. Tech., 23: 681-690.
Thorn, M., and F. Sorensson. 1996. Variation of nitrous oxide
formation in the denitrification basin in a wastewater
treatment plant with nitrogen removal. Wat. Res., 30: 1543-
1547.
Uemoto, H., and H. Saiki. 2000. Distribution of Nitrosomonas
europaea and Paracoccus denitrificans Immobilized in Tubular
Ploymeric Gel for Nitrogen Removal. Applied and
Environmental Microbiology, 66: 816-819.
Ukita, M., M. Ishikawa, M. Takeuchi, M. Fukagawa, and H.
Nakanishi. 1990. Biological nitrogen removal in a complete
mixing type aerator with ORP control. Wat. Sci. Tech., 22:
269-270.
Van Loosdrecht, M. C. M., and M. S. M. Jetten. 1998.
Microbiological conversions in nitrogen removal. Wat. Sci.
Tech, 38: 1-7.
Velasco, J., R. Conchi, I. L. Goñi, L. José, D. Ramón, and I.
Moriyó. 1998. Evaluation of the relatedness of Brucella
spp. And Ochrobactrum intermedium sp. Nov., a new species
with a closer relationship to Brucella spp. International
Journal of Systematic Bacteriology, 48: 759-768.
Villaverde, S., P. A. G. Encina, and F. F. Polanco. 1997.
Influence of pH over nitrifying biofilm activity in submerged
biofilters. Wat. Res., 31: 1180-1186.
Waligora, A. J., M. C. Barc, P. Bourlioux, A. Collignon, and T.
Karjalainen. 1999. Clostridium difficile Cell Attachment is
modified by environmental factors. Applied and Environmental
Microbiology, 65: 4234-4238.
Wang, X. W., and S. H. Garth. 1998. Calcium alginate gels:
formation and stability in the presence of an inert
electrolyte, Polymer, 39: 2759-2764.
Wartchow, D. 1990. Nitrification and Denitrification In
Combined Activated Sludge Systems. Wat. Sci. Tech., 22: 199-
206.
Wild, D., R. V. Schulthess, and W. Gujer. 1994. Nitric and
nitrous oxide from denitrification activated sludge at low
oxygen concentration. Wat. Sci. Tech., 30: 93-102.
YE, R. W., B. A. Averill and J. M. Tiedje. 1994.
Denitrification: Production and consumption of nitric oxide.
Applied and Environmental Microbiology, 60: 1053-1058.
Zheng, H., K. Hanaki, and T. Matsuo. 1994. Production of
nitrous oxide gas during nitrification of wastewater. Wat.
Sci. Tech., 30: 133-141.
Zhou, J., A. Palumbo and J. M. Tiedje. 1997. Sensitive
detection of a novel class of toluene-degrading denitrifiers,
Azoarcus toluyticus, with small-subunit rRNA primers and
probes. Applied Environmental Microbiology, 63: 2384-2390.
Zumft, Walter G. 1997. Cell biology and molecular basis of
denitrification. Microbiology and Molecular Biology Reviews,
533-616.
丁中凱、萬騰州、袁又罡。1998。改良型褐藻膠鈣 (Alg-PEG-PEI) 擔體
之污水處理效能評比研究,第二十三屆廢水處理技術研討會論文集,7-
14。
王俊欽、李季眉。1998。ABS廢水中以丙烯醯胺為基質之脫氮菌的分離及
特性,第二十三屆廢水處理技術研討會論文集,719-726。
王俊欽、李季眉、陳莉容。1999。懸浮與固定化丙烯醯胺分解菌對人工合
成廢水中丙烯醯胺去除之研究,第二十四屆廢水處理技術研討會論文
集,167-172。
史慧萍、曾四恭。2000a。具共呼吸現象之脫硝菌株之篩選及其特性之研
究,第二十五屆廢水處理技術研討會論文集,181-187。
史慧萍、曾四恭。2000b。於好氧環境下脫硝菌株 Pseudomonas stutzeri
懸浮狀態與固定化細胞之脫硝特性之比較,第二十五屆廢水處理技術研
討會論文集,188-194。
吳美惠、張芳賓、朱昱學。1996。固定化微生物廢水處理技術評估,工業
污染防制,59:81-110。
陳國誠、吳建一。1998。微生物固定化技術在廢水處理的應用,工業污染
防制,68:1-23。
陳國誠。2000。生物固定化技術與產業應用,茂昌圖書有限公司。
陳國誠。1992。微生物酵素工程學,藝軒圖書有限公司。
莊明勳。1997。以生化氮氣產能試驗 (BNP test) 探討脫硝反應之基質
C/N 比對 N2O 生成潛能之影響,東海大學環境科學研究所碩士論文。
萬騰州、袁又罡、丁中凱、崔天佑。1998。改良型褐藻膠鈣擔體之應用參
數研究,第二十三屆廢水處理技術研討會論文集,15-23。
萬騰州、林彥斌、黃清水、何恭銘、董淑麗。2000。添加PVA-Alg擔體之
微生物處理系統操作特性之研究─以養豬廢水為例,第二十五屆廢水處
理技術研討會論文集,156-166。
鄭幸雄、陳賢焜、俞文祥。1994。脫硝污泥生化氮氣產能試驗方法之探討
與建立,第十九屆廢水處理技術研討會論文集,689-696。
蔡宜宸、李季眉。1998。好氧脫硝菌株Acinetobacter sp.對好氧活性污
泥脫硝作用之影響,第二十三屆廢水處理技術研討會論文集,278-
285。
蘇昭郎、歐陽嶠暉。1992。氮、磷生物處理技術之回顧與前瞻,國立中央
大學環境工程學刊,1-12。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔