跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/07 19:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王鄭傑  
研究生(外文):Cheng Chieh Wang
論文名稱:鉑在鹽酸溶液中陽極溶解之動力研究
論文名稱(外文):A Kinetic Study of the Anodic Dissolution of Platinum in Hydrochloric Acid Solutions
指導教授:黃進益黃進益引用關係
指導教授(外文):Jin Yih Hwang
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:89
中文關鍵詞:鹽酸陽極溶解動力研究氯鉑酸循環伏安法過氧化氫原子力顯微鏡
外文關鍵詞:PlatinumHydrochloric AcidAnodic DissolutionA Kinetic StudyHexachloroplatinic AcidCyclic VoltammetryHydrogen PeroxideAtomic Force microscope
相關次數:
  • 被引用被引用:0
  • 點閱點閱:320
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鉑在工業上應用甚廣,但因價格昂貴,是以電鍍方式將數微米之鉑鍍在元件上,除了增加其表面積外,仍不失原純鉑之性質與功能。鉑鍍液中之鉑鹽以六氯鉑酸的成本最低,所以本文乃探討在不同溫度下,鉑在各種氯化氫溶液中之陽極伏安行為,從而建立鉑陽極溶解形成六氯鉑酸根離子之電位、溫度、濃度等操作條件,甚而研製六氯鉑酸鍍液。
本論文主要在研究鉑在鹽酸溶液中陽極溶解之動力行為。本文內容可分為三個部分,第一部份探討鉑在有無過氧化氫之鹽酸溶液的氧化還原行為,透過循環伏安法得知鉑陽極溶解之最佳操作溫度為60℃,鹽酸溶液濃度為8至12M以及陽極電位控制在0.624V(vs. SCE)。而添加過氧化氫之鹽酸溶液其循環伏安圖中之0.5至0.7V範圍內的陽極波峰比未添加過氧化氫溶液時明顯。
第二部分則以定電位法陽極溶解鉑產生PtCl62-,利用原子吸收光譜儀來測量鉑陽極溶解於鹽酸溶液後,溶液中鉑離子的濃度,加以探討鉑的溶解速率。定電位陽極溶解前15分鐘,12M鹽酸與2M過氧化氫溶液,鉑的陽極溶解速率為未添加過氧化氫之鹽酸溶液時的17倍。15至60分鐘添加過氧化氫的鹽酸溶液溶解速率趨於定值,其鉑的陽極溶解速率為未添加過氧化氫之鹽酸溶液時的2倍。將溶液以紫外光-可見光吸收光譜儀測試,發現陽極溶解後溶液在波長262nm左右有明顯的吸收度,因此可推斷鉑在陽極溶解後,溶液內所含的物種為六氯鉑酸根離子(PtCl62-)而不是四氯鉑酸根離子(PtCl42-)。接著經由掃描電子顯微鏡與原子力顯微鏡觀察鉑電極表面的整體形態與原子結構,探討其陽極溶解的情形。
第三部分為利用陰離子交換膜區隔陰極與陽極,將陽極(鉑片)溶解後形成PtCl62-透過陰離子交換膜使鉑沈積於陰極上,利用掃描式電子顯微鏡來瞭解陰極表面整體形態與細部結構,並透過原子力顯微鏡的掃描來觀察在陰極表面上鉑沈積的情形。
Platinum is widely used in industry, however, the prices of platinum are so expansive. Several micron thickness platinum is plated on workpieces, which increase its surface areas and still owns the property of the original platinum. The cost of the chloroplatinic acid among all the platinum salts is the lowest in platinum electroplating solution. This work is to investigate the effect of concentration of hydrochloric acid, temperature and anodic potential on the anodic dissolution of platinum by the electrochemical methods such as cyclic voltammetry.
The object of this paper is a kinetic study of the anodic dissolution of platinum in hydrochloric acids. The contents of this paper can be divided into three parts. The first part, the redox reaction of platinum in the hydrochloric acid solutions with and without hydrogen peroxide was studied. The best condition of anodic dissolution of platinum in hydrochloric acid solution was obtained.
The second part, the dissolution of anodic platinum in hydrochloric acid solution was studied by potentiostat method. And then the concentration of platinum ion in anolyte was measured by atom absorption spectrometry. Meanwhile, the kinds of species in the solutions were analyzed by Ultraviolet-Visible spectrometry. The surface of platinum was also measured by both scan electron microscope and atomic force microscope.
The last one, a divided cell separated by an anion exchanging was assembled in order to selective passing the PtCl62- ion formed in the anolyte by anodic dissolution of platinum and the PtCl62- ion diffused through the anion exchanging membrane to catholyte for the deposition of Pt on the cathode.
中文摘要………………………………………………………………………i
英文摘要………………………………………………………………………ii
誌謝…………………………………………………………………………iii
目次……………………………………………………………………………iv
表目錄…………………………………………………………………………vi
圖目錄………………………………………………………………………vii
第一章緒論………………………………………………………………1
1.1 鉑之特性…………………………………………………………………1
1.2 鉑在水溶液中之熱力學特性……………………………………………3
1.3 鉑溶解王水化學生成氯鉑酸之文獻回顧………………………………7
1.4 本研究動機與大綱………………………………………………………12
第二章原理………………………………………………………………14
2.1 陽極溶解與電極動力學…………………………………………………14
2.2 循環伏安法(Cyclic Voltammetry, CV)的原理……………………17
2.3 電化學系統的特性………………………………………………………23
2.4 原子吸收光譜法(Atomic Absorption Spectrometry, AA)原理…25
2.5 紫外光-可見光吸收光譜法(Ultraviolet-Visible Spectrometry, UV)原理………………………………………………………………………27
2.6 原子力顯微鏡(Atomic Force Microscope, AFM)原理……………27
第三章實驗………………………………………………………………32
3.1 儀器………………….…………………………………………………32
3.2 藥品………………………………………………………………………32
3.3 實驗流程、步驟與分析方法……………………………………………40
3.3.1 鉑之前處理步驟………………………………………………………42
3.3.2 循環伏安法實驗………………………………………………………42
3.3.3 定電位法陽極溶解鉑…………………………………………………44
3.3.4 定電位法鉑沈積於陰極………………………………………………45
第四章結果與討論………………………………………………………46
4.1 鉑在不同濃度鹽酸溶液之循環伏安行為………………………………46
4.1.1 溫度效應………………………………………………………………46
4.1.2 濃度效應………………………………………………………………52
4.1.3 添加過氧化氫溶液效應………………………………………………59
4.2 定電位法陽極溶解鉑……………………………………………………63
4.3 定電位法鉑沈積於陰極.………………………………………………76
第五章結論………………………………………………………………81
參考文獻………………………………………………………………………83
符號彙編………………………………………………………………………88
01.J. Mazia, Guide Book of Metal Finishing. Directory for 1983. ed. Inc., Hackensack, New Jersey (1983).
02.N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, Pergamon, Oxford, 1337 (1984).
03.H. V. K. Udupa, B. R. Yadav, S. Krishnamurthy, P. Subbiah, A. K. Komerwar, K. Asokan and R. Thasgappan, Corrosion and Maintenance(1980).
04.R. E. Kirk, D. E. Othmer., Encyclopedia of Chemical Technology, Vol. 18, 242 (1982).
05.D.C. Washington, Engelhard Industries Tech. Bull. Vol. VI (3) Dec. (1965).
06.M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solution, Printed in National Association of Corrosion Engineers, Houston, Taxas (1974).
07.J. A. Harrison and T. A. Whitfield, Electrochem. Acta, 28, 1229 (1983).
08.R. A. J. Rand and R. Woods, J. Electroanal. Chem., 35, 209 (1972).
09.S. Trasatti, Electrodes of Conductive Metallic Oxides, Part A and B, Amsterdam (1981).
10.R. Woodes and A. J. Bard, Electroanalytic Chemistry, Vol. 9, 27, Marcel Dekker, New York (1976).
11.B. E. Conway, S. G. Davidson, Progress in Surface Science, Vol. 16, 1, Pergamon Press, Oxford (1984).
12.L. D. Burke, M. B. C. Roche and W. A. O’Leary, J. Appl. Electrochem., 18, 781 (1988).
13.L. D. Burke and J. A. Morrissey, J. Electrochem. Soc., 141, 2361 (1994).
14.S. D. James, J. Electrochem. Soc., 116, 1681 (1969).
15.L. D. Burke, J. J. Borodzinski and K. J. O’Dwyer, Electrochim. Acta, 35, 976 (1990).
16.L. D. Burke and M. M. Murphy, J. Electroanal. Chem., 305, 301 (1991).
17.G. Tremiliosi-Filho, G. Jerkiewicz and B. E. Conway, Langmuir, 8, 658 (1992).
18.L. D. Burke and J. F. Rohan, J. Electrochem. Soc., 139, 1600 (1992).
19.L. D. Burke and K. J. O’Dwyer, Electrochim. Acta, 37, 43 (1992).
20.L. D. Burke, J. K. Casey and J. A. Morrissey, ibid., 38, 897 (1993).
21.M. Peuckert, F. P. Coenen and H. P. Bonzel, ibid., 29, 1305 (1984).
22.A. Visintin, W. E. Triaca and A. J. Arvia, J. Electroanal. Chem., 284, 465 (1990).
23.A. E. Bolzan and A. J. Arvia, ibid., 341, 93 (1992).
24.Gilchrist, R. Chem. Rev., 32, 277 (1943).
25.W. C. Fernelius, Inorganic syntheses, 2, 247-255 (1946).
26.Wendell M. Latimer, Oxidation Potentials, 204-209 (1952).
27.Heslop Jones, Inorg. Chem., 701-721 (1976).
28.Heslop, Robinson, Inorg. Chem., 474-484 (1960).
29.G. M. Schmid and D. R. Atherton, Anal. Chem., 58, 1956-1959 (1986).
30.Ginsberg, S. I.; Ezerskaya, N. A.; Prokof’eva, I. V.; Fedorenko, N. V.; Shlenskaya, V. I., Analytical Chemistry of Platinum Metals; Wiley: New York (1975).
31.H. L. Grube, Handbook of preparative inorganic chemistry, 1560-1581 (1969).
32.J. J. Kirkland, John H. Yoe, Anal. Chim. Acta, 9, 441-445 (1953).
33.A. B.Malinin, N. V.Kurenkov, M. D.Kozlova, A. S.Sevast''yanova, J. Radioanal. Nucl. Chem., 126, 1, 17-25 (1988).
34.J. Iniesta, J. Gonzalez-Garcia, J. Fernandez, V. Montiel, A. Aldaz, J. Mater. Chem., 9, 3141-3145 (1999).
35.X. Ye et al., Talanta 47, 1099-1106 (1998).
36.T. N. Angelidis, E. Skouraki, Applied Catalysis A: General 142, 387-395, (1996).
37.J. Van Muylder, N. de Zoubov and M. Pourbaix, in M. Pourbaix, Atlas of Electrochemical Equilibria in Aquatic Solutions, NACE, Cebelcor, 378 (1974).
38.W. M. Latimer, Oxidation Potentials, Prentice-Hall (1956).
39.F. Colom, in A. J. Bard, R. Parsons and J. Jordan, Standard Potential in Aqueous Solution. Palladium and Platinum, IUPAC, Marcel Dekker, 339-366 (1985).
40.F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Wiley (1988).
41.P. A. Distin and F. K. Letowski, Canadian Pat. No. 871110 (1984).
42.J. E. Litz, Prepr. Soc. Min. Engrs., AIME, No. 86-155 (1986).
43.D. R. Tyson and R. G. Bautista, Separation Sci. Technol., 22, 1149 (1987).
44.R. Bock, Decomposition Methods in Analytical Chemistry, International Textbook Co., 197 (1979).
45.Czech patents, 269455 (1988).
46.U.S. patents, 4775452 (1988).
47.European patents, 0221187 (1987).
48.U.S. patents, 5423957 (1995).
49.China patents, 97112637.2 (1998).
50.D. T. Shieh, and B. J. Hwang, J. Electrochem. Soc., 142, 816 (1995).
51.D. T. Shieh, and B. J. Hwang, Electrochem. Acta, 38, 2239 (1993).
52.C. Lamy, Electrochim. Acta, 29, 1581 (1984).
53.A. J. Bard and L. R. Faulkner, Electrochemical Methods, Fundamentals and Applications, New York, (2001).
54.D. K. Kyriacou, Basics of Electroorganic synthesi, New York (1981).
55.D. Plectcher, The Electrochemical Consultancy, N. Y. (1991).
56.D. R. Crow, Principle and Application of Electrochemistry, 4th ed., Chapman and Hall Ltd. London (1994).
57.H. Wendt, Electrochim. Acta, 29, 1513 (1984).
58.D. Pletcher and F. C. Walsh, Industrial Electrochemistry, Chapman and Hall Ltd. London (1990).
59.S. Trasatti, Electrochim. Acta, 36, 225 (1991)
60.J. S. Newman, Electrochemical Systems, Practice-Hall, N. Y. (1973)
61.B. H. Vassos and G. W. Ewing, Electroanalytical Chemistry, John Wiley & Sons, New York, (1990).
62.J. D.Genders and D. Pletcher, Electrosynthesis from Laboratory, to Pilot, to Production, The Electrosynthesis Company Inc., N. Y. (1990).
63.S. Trasatti, Electrochim. Acta, 29, 1503 (1984).
64.Derek Pletcher and Frank C. Walsh, Industrial Electrochemistry, London: Blackie Academic & Professional (1993).
65.H. H. Willard, L. L. Merritt, Jr., J. A. Dean, and F. A. Settle, Jr., Instrumental Methods of Analysis, 7th ed., Wadsworth, Inc., California (1988).
66.R. Yoda, Y. Yamamoto, and Y. Murakami, Microchim. Acta, 75 (1983).
67.R. M. Rynders, and R. C. Alkire, J. Electrochem. Soc., 141, 1166 (1994).
68.J. Wollschlager, and N. M. Amer, Surf. Sci., 277, 1 (1992).
69.G. Potschke, J. Schroder, C. Gunther, R. Q. Hwang, and R. J. Behm, Surf. Sci., 251/252, 592 (1991).
70.M. P. Green, K. J. Hanson, R. Carr, and I. Lindau, J. Electrochem. Soc., 137, 3493 (1990).
71.T. Twomey, J. Wiechers, D. M. Kolb, and R. J. Behm, J. Microscopy, 152, 537 (1988).
72.Julie V. Macpherson and Patrick R. Unwin, Anal. Chem., 72, 276-285 (2000).
73.Digital Instruments, Scanning Probe Microscopy Training Notebook (1998).
74.I. Lee et al., Applied Surface Science, 136, 321(1998).
75.Rudnick and Cooke, Trus Journal, 39, 633 (1917).
76.Paul Rudnick, J. Am. Chem. Soc., 143, 2575-2577 (1921).
77.Cf. Z. Anal. Chem., 145, 305 (1955).
78.J. V. and J. D., Z. Anal. Chem., Band 260, Heft 5 (1972).
79.Boris Shelimov, Jean-Francois Lambert, Journal of Catalysis, 185, 462-478 (1999).
80.Lever, A. B. P., Inorganic Electronic Spectroscopy, Amsterdam: Elsevier (1984).
81.T. M. Buslaeva and S. A. Simanova, Russian Journal of Coordination Chemistry, Vol. 25, 3, 165-176 (1999).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊